Regular Expressions and Finite State Automata

Gul Agha
2104 SC
http://www.cs.uiuc.edu/class/fa05/cs421/current/

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Elsa Gunter
Syntax is the description of which strings of symbols are meaningful expressions in a language.

It takes more than syntax to understand a language; need meaning (semantics) too.

Syntax is the entry point.
Elements of Syntax

- Character set – previously always ASCII, now often 64 character sets
- Keywords – usually reserved
- Special constants – cannot be assigned to
- Identifiers – can be assigned to
- Operator symbols
- Delimiters (parenthesis, braces, brackets,)
- Blanks (aka white space)
Elements of Syntax

- Expressions
- Type expressions
- Declarations (in functional languages)
- Statements (in imperative languages)
- Subprograms
Elements of Syntax

- Modules
- Interfaces
- Classes (for object-oriented languages)
Formal Language Descriptions

- Regular expressions, regular grammars, finite state automata
- Context-free grammars, BNF grammars, syntax diagrams
- Whole family more of grammars and automata – covered in automata theory
Grammars

Grammars are formal descriptions of which strings over a given character set are in a particular language.

- Language designers write grammar.
- Language implementers use grammar to know what programs to accept.
- Language users use grammar to know how to write legitimate programs.
Regular Expressions

- Start with a given character set – a, b, c…
- Each character is a regular expression
 - The regular expression b represents the set { b }
Regular Expressions

- If x and y are regular expressions, then xy is a regular expression
 - xy represents the set of all strings made concatenating a string in x with a string in y

- If x and y are regular expressions, then $x \mid y$ is a regular expression
 - $x \mid y$ represents the set of strings in x or in y (or both)
Regular Expressions

- If x is a regular expression, then so is (x)
 - (x) represents the same thing as x
- If x is a regular expression, then so is x^*
 - x^* represents strings made by concatenating zero or more strings from x
- ε
 - represents the empty set
Example Regular Expressions

- \((0|1)^*1\)
 - The set of all strings of 0’s and 1’s ending in 1, \{1, 01, 11, \ldots\}

- \(a^*b(a^*)\)
 - The set of all strings of a’s and b’s with exactly one b

- \(((01) \mid (10))^*\)
 - You tell me

- Regular expressions (equivalently, regular grammars) important for lexing, breaking strings into recognized words
Example: Lexing

- Regular expressions good for describing lexemes (words) in a programming language
 - Identifier = (a | b | ... | z | A | B | ... | Z) (a | b | ...
 - Digit = (0 | 1 | ... | 9)
 - Number = (1 | ... | 9)(0 | ... | 9) | ~ (1 | ... | 9)(0 | ...
 - Keywords: if = if, while = while,...
Implementing Regular Expressions

- Regular expressions can generate strings in a language
- Not so good for recognizing when a string is in language
- Regular expressions: which option to choose, how many repetitions to make
- Answer: finite state automata
Finite State Automata

A finite state automata over an alphabet is:
- a directed graph
- edges are labeled with elements of alphabet, or empty string
- some nodes (or states), marked as final
- one node marked as start state

Syntax of FSA
Example FSA
Deterministic FSA’s

- If FSA has for every state exactly one edge for each letter in alphabet then FSA is *deterministic*
 - No edge labeled with ε

- In general FSA in *non-deterministic*.
 - NFSA also allows edges labeled by ε

- Deterministic FSA special kind of non-deterministic FSA
DFSA Language Recognition

- Think of a DFSA as a board game; DFSA is board
- You have string as a deck of cards; one letter on each card
- Start by placing a disc on the start state
DFSA Language Recognition

- Move the disc from one state to next along the edge labeled the same as top card in deck; discard top card

- When you run out of cards:
 - if you are in final state, you win; string is in language
 - if you are not in a final state, you lose; string is not in language
DFSA Language Recognition - Summary

- Given a string (over the alphabet)
- Start at start state
- Move over edge labeled with first letter to new state
- Remove first letter from string
- Repeat until string gone
- If end in final state then string in language

Semantics of FSA
Example DFSA

- Regular expression: \((0 \mid 1)^* 1\)
- Deterministic FSA

![Diagram of DFSA with states 0 and 1, transitions labeled with 0 and 1]
Example DFSA

- Regular expression: \((0 \mid 1)^* \ 1\)
- Accepts string: 0 1 1 0 1
Example DFSA

- Regular expression: $(0 | 1)^* \ 1$
- Accepts string $\ 0 \ 1 \ 1 \ 0 \ 1$
Example DFSA

- Regular expression: \((0 \mid 1)^*\ 1\)
- Accepts string: \(0\ 1\ 1\ 0\ 1\)
Example DFSA

- Regular expression: \((0 \mid 1)^* \ 1\)
- Accepts string \(0\ 1\ 1\ 0\ 1\)
Example DFSA

- Regular expression: \((0 \mid 1)^* 1\)
- Accepts string: \(01101\)
Example DFSA

- Regular expression: \((0 \mid 1)^* \ 1\)
- Accepts string: \([0\ 1\ 1\ 0\ 1]\)
Example DFSA

- Regular expression: $(0 | 1)^* 1$
- Accepts string: 01101
NFSA generalize DFSA in two ways:
- Include edges labeled by ε
 - Allows process to non-deterministically change state
- Each state can have zero, one or more edges labeled by each letter
 - Given a letter, non-deterministically choose an edge to use
NFSA Language Recognition

- Play the same game as with DFSA
- Free move: move across an edge with empty string label without discarding card
- When you run out of letters, if you are in final state, you win; string is in language
- You can take one or more moves back and try again
- If have tried all possible paths without success, then you lose; string not in language
Move the disc from one state to next if edge between labeled the same as top card in deck; discard top card
Free move: move across an edge with empty string label without discarding card
When you run out of cards, if you are in final state, you win; string is in language
You can take a move back and try another
If you have cards left and you have tried all possible edges without success, then you lose; string not in language
Example NFSA

- Regular expression: \((0 | 1)^* \ 1\)
- Non-deterministic FSA
Example NFSA

- Regular expression: \((0 \mid 1)^* 1\)
- Accepts string: 0 1 1 0 1
Example NFSA

- Regular expression: \((0 | 1)^* \ 1\)
- Accepts string \(0 \ 1 \ 1 \ 0 \ 1\)
Example NFSA

- Regular expression: \((0 \mid 1)^* 1\)
- Accepts string: 0 1 1 0 1
Example NFSA

- Regular expression: \((0 \mid 1)^* 1\)
- Accepts string 0 1 1 0 1
Example NFSA

- Regular expression: \((0 \mid 1)^* 1\)
- Accepts string: **0 1 1 0 1**
- Guess: **0 1 1 0 1**
Example NFSA

- Regular expression: \((0 \mid 1)^* \ 1\)
- Accepts string: \([0 \ 1 \ 1 \ 0 \ 1]\)
- Backtrack
Example NFSA

- Regular expression: $(0 | 1)^* 1$
- Accepts string: $0\underline{1}1 0 1$
- Guess again
Example NFSA

- Regular expression: $(0 \mid 1)^* \ 1$
- Accepts string: $0 \ 1 \ 1 \ 0 \ 1$
- Guess
Example NFSA

- Regular expression: \((0 \mid 1)^* 1\)
- Accepts string: 0 1 1 0 1
- Backtrack
Example NFSA

- Regular expression: \((0 \mid 1)^* \mid 1\)
- Accepts string: \(0 \mid 1 \mid 1 \mid 0 \mid 1\)
- Guess again
Example NFSA

- Regular expression: \((0 \mid 1)^* \ 1\)
- Accepts string: 0 1 1 0 1 1
Example NFSA

- Regular expression: \((0 \mid 1)^* 1\)
- Accepts string: 0 1 1 0 1
- Guess (Hurray!!)
Rule Based Execution

- Search
- When stuck backtrack to last point with choices remaining
- Executing the NFSA in last example was example of rule based execution
- FSA’s are rule-based programs; transitions between states (labeled edges) are rules; set of all FSA’s is programming language