Data Abstraction

Gul Agha
CS 421

Data should be specified via interfaces
- **Interface**
 - What the data represents
- **Implementation**
 - Specific representation of the data and code for operations using the data

Abstract Data Types: the data type represented by the interface.
The rest of program manipulates data only through operations specified by the interface.

Example: Natural numbers

\[
\lceil v \rceil \quad \text{the representation of } v
\]

zero = \lceil 0 \rceil

(iszero? \lceil v \rceil) = \#t \quad n = 0
\#f \quad n \neq 0

(succ \lceil n \rceil) = \lceil n + 1 \rceil \quad n \geq 0

(pred \lceil n \rceil) = \lceil n - 1 \rceil \quad n \geq 0

Representation Independence

- Client program should *not* rely on the representation of data or operations of an abstract data type.

(define plus
 (lambda (x y)
 (if (iszero? x)
 y
 (succ (plus (pred x) y)))))

Unary Representation (Church’s encoding)

\[
[0] = ()
\[n + 1\] = (cons \#t [n])
\]

(define zero ‘())
(define iszero? null?)
(define succ (lambda (n) (cons \#t n)))
(define pred cdr)
Scheme’s Number Representation

(define zero 0)
(define iszero? zero?)
(define succ (lambda (n) (+ n 1)))
(define (pred (lambda (n) (- n 1)))

Big Num Representation

Represent the numbers in base N:
\[\lceil n \rceil = () \text{ if } n = 0 \]
\[\lceil n \rceil = (\text{cons } r \lceil q \rceil) \]
\[n = qN + r \text{ where } 0 \leq r < N \]

Example: N = 16
[33] = (1 2)
[258] = (2 0 1)

Abstraction to Represent Inductive Data Types

- **Constructors**
 - Build elements of inductive data type
- **Predicate**
 - To test if value is of
 - Inductively defined type
 - Subtypes used in definition
- **Extractor**
 - To deconstruct the data type value

Example Data Type

\[\langle \text{bintree} \rangle \rightarrow \]
\[\langle \text{number} \rangle \]
\[\langle \text{symbol} \rangle \langle \text{bintree} \rangle \langle \text{bintree} \rangle \]

bintree is either
- a number
- the cross-product of a symbol and two binary trees

Defining Data Types in Scheme

(define-datatype bintree bintree? (leaf-node (datum number?))
 (interior-node (key symbol?) (left bintree?) (right bintree?)))

Interface of the Data Type

- a 1-argument procedure which constructs a leaf-node
 - leaf-node tests its arguments with number?
- a 3-argument procedure which constructs an interior-node
 - Tests its first argument with symbol?
 - Tests its second and third argument with bintree?
Syntax

(define-datatype type-name
 predicate-name
 { (variant-name {(field-name predicate)}*)
 }*)

Using the Bintree Datatype

(define-datatype bintree
 bintree?
 (leaf-node
 (datum number?))
 (interior-node
 (key symbol?)
 (left bintree?)
 (right bintree?)
)

(define leaf-sum
 (lambda (tree)
 (cases bintree tree
 (leaf-node (n) n)
 (interior-node
 (key left right)
 (+ (leaf-sum left)
 (leaf-sum right)))
)))

Concrete Syntax

- Particular representation of an inductive data type
 - `<expression>`
 - `<identifier>`
 - `(lambda (<identifier>) <expression>)`
 - `(<expression> <expression>)`

Abstract Syntax

- Represents the actual structure
- Omits elements that are not necessary
- Represented as an ordered tree
 - Root is grammatical form (nonterminal)
 - Leaves are terminal
 - Tree represents the application of a rule

Example

```
(lambda (x) (f (f x)))
```

```
<expression>
  → <identifier>  var-exp (id)
  → (lambda (<identifier>) <expression>)
  → ( <expression> <expression>)
  → app-exp (rator rand)
```
Parsing Expressions

(define parse-expression
 (lambda (datum)
 (cond
 ((symbol? datum) (var-exp datum))
 ((pair? datum)
 (if (eqv? (car datum) 'lambda)
 (lambda-exp (caadr datum)
 (parse-expression (caddr datum)))
 (app-exp
 (parse-expression (car datum))
 (parse-expression (cadr datum))))))))

A Richer Language

<expression>
 → <number> lit-exp (datum)
 → <var-exp> var-exp (id)
 → (if <expression> <expression> <expression>)
 → (lambda <identifier> <expression>)
 → (<expression> <expression>)
 → (app-exp <rator> <rand>)

Note: Some more useful higher order functions

- Reduce
- Zip

Reference

Also has fun web programming package in Scheme (go up in webpage)

Reduce

Successive reductions by a binary operator

Example

- (reduce-left - '(1 2 3 4 5))
 -13
- (reduce-right - '(1 2 3 4 5))
 3
- (reduce-left append
 (list (list 1 2 3) (list 'a 'b 'c)))
 (1 2 3 a b c)

reduce-right defined

(define reduce-right
 (lambda (f lst)
 (if (null? (cdr lst))
 (car lst)
 (f (car lst)
 (reduce-right f (cdr lst))))))
Trace of call to reduce right

> (reduce-right '(1 2 3 4 5))
| (reduce-right #<primitive:-> (1 2 3 4 5))
| | (reduce-right #<primitive:-> (2 3 4 5))
| | | (reduce-right #<primitive:-> (3 4 5))
| | | | (reduce-right #<primitive:-> (4 5))
| | | | | (reduce-right #<primitive:-> (5))
| | | | | | 15
| | | | | | | -1
| | | | | | | 4
| | | | | | | -2
| | | | | | | 3

Iterative Procedure for reduce-left

(define reduce-left
(lambda (f lst)
(reduce-help-left f (cdr lst) (car lst)))))

(define reduce-help-left
(lambda (f lst res)
(if (null? lst)
res
(reduce-help-left f (cdr lst)
(f res (car lst))))))

Sample execution of reduce-left

> (reduce-left - '(1 2 3 4 5))
| (reduce-help-left #<primitive:-> (2 3 4 5) 1)
| | (reduce-help-left #<primitive:-> (3 4 5) -1)
| | | (reduce-help-left #<primitive:-> (4 5) -4)
| | | | (reduce-help-left #<primitive:-> (5) -8)
| | | | | (reduce-help-left #<primitive:-> () -13)
| | | | | | -13
| | | | | |

Zip

Composes two lists of equal length to a single list by means of zipping their elements pair-wise

\[(e_1, f_1, e_2, f_2, e_3, f_3, \ldots, e_n, f_n) \]

Example of zip

> (zip cons '(1 2 3) '(a b c))
| ((1 . a) (2 . b) (3 . c))

> (zip + '(1 2 3) '(4 5 6))
| (5 7 9)

Zip implementation

(define zip
(lambda (z lst1 lst2)
(if (null? lst1)
'(
(cons (z (car lst1) (car lst2))
(zip z (cdr lst1)
(cdr lst2))))))
So now FOLD. This is actually the one we've always hated most, because, apart from a few examples involving + or *, almost every time we see a FOLD call with a non-trivial function argument, we have to grab pen and paper and imagine the *result* of a function flowing back in as the *argument* to a function. Plus, there are *more* arguments coming in on the side! This is all absurdly complicated. Because almost all the examples of FOLD we found in practice could be written as a simple loop with an accumulator, this style should be preferred, perhaps with us providing a simple helper function to abstract away the boilerplate code. At any rate, FOLD must fold.

--The PLT Scheme Team