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Abstract 

For many languages in the world, not enough (annotated) 

speech data is available to train an ASR system. Recently, we 

proposed a cross-language method for training an ASR system 

using linguistic knowledge and semi-supervised training. Here, 

we apply this approach to the low-resource language Mboshi. 

Using an ASR system trained on Dutch, Mboshi acoustic units 

were first created using cross-language initialization of the 

phoneme vectors in the output layer. Subsequently, this adapted 

system was retrained using Mboshi self-labels. Two training 

methods were investigated: retraining of only the output layer 

and retraining the full deep neural network (DNN). The 

resulting Mboshi system was analyzed by investigating per 

phoneme accuracies, phoneme confusions, and by visualizing 

the hidden layers of the DNNs prior to and following retraining 

with the self-labels. Results showed a fairly similar 

performance for the two training methods but a better phoneme 

representation for the fully retrained DNN. 

Index Terms: Low-resource automatic speech recognition, 

Cross-language adaptation, Semi-supervised training 

1. Introduction 
Typically a large amount of annotated speech data is required 

to build automatic speech recognition (ASR) systems that work 

reasonably well. However, for many languages in the world, not 

enough of such (annotated) speech data is available to train an 

ASR system. Due to differences between languages in phone 

inventories, and the fact that phones transcribed with the same 

IPA symbol can be produced slightly differently between 

different languages [1], using an ASR trained on a different 

language typically performs quite poorly [2]. Most of the 

world’s languages have however been investigated by field 

linguists, consequently some information about the language is 

available. Recently, we proposed a cross-language definition of 

units method, which uses linguistic knowledge of the low-

resource language and a semi-supervised training paradigm to 

build an ASR system for a low-resource language through the 

adaptation of a high-resource language ASR system [3].  

The crucial part of adapting an ASR system from one 

language to another language is the creation of phones that are 

present in the low-resource language but not in the high-

resource language. In [3], we proposed the following three-step 

method to create the missing phone units:  First, a DNN-based 

ASR system is built on a high-resource language, in our case 

Dutch. Second, the acoustic units for the ‘missing’ phones are 

initialized through a linear extrapolation between existing 

acoustic units in the high-resource ASR system’s soft-max 

layer. Third, the adapted model’s output layer is iteratively 

retrained using self-labelled phone sequences of the low-

resource language in order to improve the acoustic phone units.  

This approach has three assumptions: 1) the availability of 

some unlabelled speech data of the low-resource language (in 

line with the Zero-resource approach, e.g., [4][5][6]); 2) the 

availability of a ‘description’ of the phone(me) inventory of the 

language, e.g., obtained from a field linguist; 3) the availability 

of enough annotated speech material of a related high-resource 

language to build an ASR system for that related high-resource 

language. The proposed approach was tested on the adaptation 

of a Dutch ASR system to English, which was taken to be a 

low-resource language. The results showed a significant, 

though limited, improvement in phone error rate after retraining 

the acoustic units on the self-labelled utterances.  

The work presented in this paper extends the previous work 

in several important directions. First, the approach is tested on 

an actual low-resource language without orthography, Mboshi. 

By doing so, the approach is tested on an unrelated language 

pair: Dutch and Mboshi, thus investigating the claim in [3] that 

the proposed method does not rely on having a high-resource 

related language but that the proposed approach should work 

for any language pair. In [3], it was suggested that part of the 

reason for the only limited phone recognition improvement was 

that only the output layer was retrained with the self-labels. 

Here, we retrain the entire DNN model and compare that with 

a model in which, like for [3], only the output layer was 

retrained. Moreover, since the ultimate goal of this work is to 

build an ASR system for low-resource languages that are able 

to capture and correctly represent all phonemes of the low-

resource  language, we provide in-depth performance analyses 

of the newly created and existing phoneme representations by 

looking at phoneme confusions and through the visualization of 

the hidden layers of the DNN. 

2. Methodology 

2.1. Data 

The Spoken Dutch Corpus (Corpus Gesproken Nederlands, 

CGN, [7]) is a corpus of almost 9M words of Dutch spoken in 

the Netherlands and in Flanders (Belgium), in 14 different 



speech styles. For the experiments reported here, we only used 

the read speech material from the Netherlands, which amounts 

to 551,624 words for a total duration of approximately 64 hours 

of speech. This data was split into a training and test set of 90% 

and 10%, respectively. Mono-phone forced-alignments and 40-

dimensional Filterbank features were created using Kaldi [8].  

The Mboshi (Bantu language spoken in Congo-Brazzaville) 

corpus [9] consists of 5k speech utterances (approximately 4 

hours of speech) in Mboshi aligned to French text. The data set 

also contains linguists’ transcriptions in Mboshi in the form of 

a non-standard graphemic form close to the language 

phonology [10][11][12]. In our experiments, we used the 2087 

training utterances for retraining the Baseline model and the 

230 validation set utterances for which mono-phone forced 

alignments were available from [11]. 40-dimensional 

filterbanks were computed for every 10 ms using Kaldi.  

2.2. Cross-language unit definition approach 

The adaptation approach consist of three steps (see for more 

details [3]). First, a baseline DNN is trained on the Dutch CGN. 

Next, the soft-max layer of the DNN is adapted from the Dutch 

to the Mboshi phone set (see Section 2.2.2). Third, the adapted 

soft-max layer is used to decode the Mboshi speech material 

using a free phone recognition pass. The baseline system is 

subsequently retrained with these Mboshi self-labels using two 

methods: In one model only the output layer was retrained, 

following [3]; in the other model, the full DNN was retrained. 

In both cases, the models are retrained for 20 epochs, where 

after each epoch the self-labels are updated (based on the 

network’s own predictions), such that the following epoch uses 

the previously updated self-labels. The accuracy of the phone 

recognition systems is evaluated at the frame level by 

comparing them to the gold standard as created by the forced 

alignment (see Section 2.1), and is reported as percentage frame 

classification accuracy.  

2.2.1. Baseline model architecture 

The baseline model used for the experiments is a feed-forward 

DNN, implemented using Tensorflow [13]. The baseline DNN 

consists of 6 fully connected hidden layers, each containing 

1024 units trained using logistic sigmoid nonlinearities. The 

network is trained to optimize a cross entropy loss function via 

Stochastic Gradient Descent for 20 epochs at a learning rate of 

0.1 with batches of size 512 and dropout (0.5). The input to the 

DNN is a frame of 10 ms duration in a context of its five 

preceding and succeeding frames. The output layer consists of 

units with soft-max activation functions and its size depends on 

the phone set of the language; see Section 2.2.2. The model re-

training over the self-labeled training data is similar to that of 

the training phase, except for a learning rate of 0.01. Accuracy 

of the Baseline model on the CGN test data was 71.74%. 

2.2.2. Adaptation of the soft-max layer 

The number of different Dutch phones in CGN is 43, while 

Mboshi has 68 different phones (see for more detail on the 

Mboshi phone inventory [12]). The output layer of the baseline  

model trained on Dutch thus needs to be adapted in several 

ways. Three Mboshi phones, /ʣ, nʣ , ʦ/ are affricates which do 

not exist in Dutch. Affricates are not presented in the soft-max 

layer, instead, in both the training and test material, for each 

affricate acoustic segment, the first half of all frames are 

assigned the label of the first phoneme of the affricate while the 

second half of the frames are assigned the label of the second 

half of the phoneme. /ʣ, ʦ/ can easily be constructed from a 

sequence of two Dutch phones (i.e., /d/ + /z/ and /t/ + /s/, 

respectively). nʣ can be seen as a combination of /nd/ + /z/. 

Sixteen Dutch phones do not exist in Mboshi and these are 

removed from the soft-max layer. Mboshi has seven vowels 

(i.e., /i, e, ɛ, a, ɔ, o, u/) which can be long or short and can have 

four tones. In the current set-up, as Dutch does not have 

contrastive tones, tone information is removed from the vowels. 

Since there are no spectral differences between long and short 

vowels, duration can be dealt with in a post-processing step.  

Finally, eight Mboshi phones do not exist in Dutch, these 

are referred to as ‘missing L2 phonemes’, and these thus need 

to be created and added to the soft-max layer of the baseline 

model. To that end, following [3], for each of the missing L2 

phonemes a vector is created in the soft-max layer of the 

baseline model on the basis of the trained Dutch (L1) phones, 

and initialized by linearly extrapolating the missing L2 

(Mboshi) node in the soft-max layer from existing vectors for 

the Dutch L1 phones using (adapted from [3]):  

 

�⃗� |𝜑|,𝐿2 = ɣ •  �⃗� |𝜑|,𝐿1:1 + 𝛼 (�⃗� |𝜑|,𝐿1:2 − �⃗� |𝜑|,𝐿1:3)            (1) 

 

where �⃗� |𝜑|,𝐿2 is the vector of the missing L2 phone φ,L2 

that needs to be created,  �⃗� |𝜑|,𝐿1:𝑥 are the vectors of the Dutch 

L1 phones φ,L1:x in the soft-max layer that are used to create 

the vector for the missing L2 phone φ,L2. Among the three 

Dutch phones, L1:1 refers to the phone which is used as the 

starting point from which to extrapolate the missing L2 phone, 

and L1:2 and L1:3 refer to the L1 phones whose displacement 

is used as an approximation of the displacement between the 

Dutch L1 vector and the L2 phone that should be created. ɣ is a 

factor which increases the non-linearity of the output function, 

i.e., it increases the sensitivity to the inputs: if an input is of 

small value then the output will be less inclined to be active but 

if the input is of a large value then the output will be active 

earlier. ɣ is set to 1.5 on the basis of tuning experiments. α is a 

factor corresponding to the approximation of the displacement 

of  �⃗� |𝜑|,𝐿2 from  �⃗� |𝜑|,𝐿1:1.  The total number of Mboshi vectors 

in the output layer is 31. 

Table 1 lists the 8 missing Mboshi phones, and the Dutch 

L1 phones that are used to create the vectors for the missing 

Mboshi L2 phonemes. While for /ß/, α is set to 0.5, for the other 

sounds α is (arbitrarily) set to 0.3 to denote a ‘a bit of’ 

prenasalisation and/or postfrication. For /mbv/, .5(m-v) denotes 

the midway point between the vectors for Dutch /m/ and /v/. 

The total number of Mboshi vectors in the output layer is 31. 

Table 1. Mapping of the Mboshi (L2) phone not present in the 

Dutch phoneme inventory. 

L2 

phone 

Mapping L2 

phone 

Mapping 

L1:1 L1:2 L1:3 L1:1 L1:2 L1:3 

mbv b .5(m-v) b nd d n d 

bv b v b pf p f p 

ŋg g ŋ g ß b v b 

mb b m b mw w m w 

2.3. I-vector representation for visualization 

In [14], we presented a method to visualize the different clusters 

the DNN learned from the information present in the hidden 

layers using a discrete version of the I-vector representation to 



the hidden node activations. The I-vector representation allows 

us to capture the acoustic variability and model the behavior of 

the neural responses of the DNNs. The discrete I-vector 

captures the DNN hidden layer responses, for a given segment 

of the speech signal, as a shift from the average responses of all 

phones. This is done by normalizing the hidden node 

activations, summing over the segment; then projecting the 

result onto a lower-dimensional basis using non-negative factor 

analysis (NFA) [16][17], which can be represented as:  

M=m+Tw 

where M is the 1024-dimensional segment summary vector, 

and m is the average across all segments in the corpus. The 

matrix T models the most important non-negative factors of 

variability in the DNN’s reactions to the set of phone segments. 

The I-vector w describes the best segment dependent offset 

within the span of the subspace defined by matrix T. The matrix 

T is trained using an EM-Like algorithm [17]. 

Figure 1. Frame classification accuracies per epoch on the 

Mboshi training and test sets for the two retrained models. 

Figure 2. Frame accuracies per phoneme category for the 

three models. 

3. Results 

3.1. Frame-level accuracy 

The baseline model’s frame classification accuracy results, i.e., 

the Dutch model whose output layer has been adapted to 

contain only Mboshi phones but which has not yet been 

retrained on the Mboshi speech self-labels, is 31.27% on the 

Mboshi training data and 32.18% on the (independent, unseen) 

Mboshi test data. Figure 1 shows the frame classification 

accuracy as a variable of the training epoch on the training data 

(dotted line) and the test data (dashed-dotted line) after only 

retraining the output layer, and after retraining the full DNN 

model: training data accuracy (dashed line) and test data 

accuracy (solid line).As the results clearly show, retraining the 

baseline model with the self-labeled Mboshi data improves 

frame-level classification substantially for both the training and 

test data. The trained phone categories generalize well to 

unseen test data indicated by the higher performances on the 

test data. (Note that the models are trained on the self-labels 

while being evaluated on the ground-truth labels. Performance 

on the training data thus does not necessarily have to be better 

than on the test data.) Retraining only the output layer (dashed-

dotted line) slightly outperforms the full model retraining 

(solid) with a small margin of .29% absolute. 

Next we investigated which phonemes in particular 

benefited from the retraining. Ideally, those would not only be 

the phonemes which already existed in Dutch. Figure 2 shows 

the frame accuracies per phoneme category before retraining 

with the self-labels (darkest grey), after retraining the output 

layer (middle grey), and after retraining the full DNN (lightest 

grey), ordered from highest to lowest accuracy before 

retraining. Of the Mboshi phonemes shared with Dutch (i.e., for 

which a Dutch vector existed in the output layer), for 7 of the 

23 phonemes, retraining with the self-labels improved 

classification accuracy, while for 10 the performance reduced. 

For 6 phonemes, retraining did not do anything, their 

performance was 0% before and after retraining. Of the newly 

created L2 phonemes, 3 phonemes, /nd, mw, mbv/, were already 

classified correctly for some frames prior to training. Retraining 

these phonemes improved performance for /mw, mbv/.  

For /a, e, o, n/, retraining only the output layer outperformed 

retraining the full DNN model. For /I, z, u, mw, mbv/ retraining 

the full model outperformed the output layer model. So, 

although training on only the output layer improved frame 

accuracy the most – albeit with only a small margin, retraining 

the full model did yield improvements for slightly more 

phonemes (5 vs. 4), and the highest accuracies for 2 of our 3 

newly created phonemes. More research is needed to 

understand the differences between the effect of initialization 

and retraining on the different phonemes and on how to 

improve the system for all phonemes.  

Looking at the phoneme confusions, we observe that all 

phonemes, thus including the consonants, are often 

misclassified as one of the five vowels. In fact, of the top five 

recognized phonemes for each phoneme, often 2 or 3 are 

vowels. This is surprising considering the vast differences in 

articulation between vowels and consonants. Potentially this is 

a data scarcity issue, however, as the number of frames in the 

training material with a vowel label is about a magnitude larger 

than that for consonants, presumably resulting in much better 

defined vowel categories than consonant categories. Moreover, 

there is a high confusability with / mbv / and /n/ for all phonemes. 

These two phones both have a fairly low number of training 

frames, which makes it surprising they so often show up in the 

top 5 of recognized phonemes. 

One would expect that the new, L2 phonemes with pre-

nasalization are also misclassified as nasals, while the 

phonemes with voiced post-frication may be misclassified as 

/w/, the closest phoneme to an alveolar voiced fricative, and the 

L2 phone with unvoiced pre-nasalization as /f/. This however 

seems not to be the case, which indicates that the newly created 

vectors are different enough from the original, Dutch vectors on 

the basis of which these new phonemes were created.  

0

0,2

0,4

0,6

0,8
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3.2. Visualizations  

To further investigate the representations of the phonemes and 

the effect retraining with the self-labels has on these 

representations, we visualized the activations of the hidden 

units of the baseline model and the fully retrained model after 

retraining with the self-labels. Figures 3-4 show 3D t-sne [18] 

visualizations of the 500 dimensional I-vectors. These vectors 

are trained on the activations of the nodes of the last hidden 

layer to the input sounds for the baseline model and the fully 

retrained model, respectively [14,16,17] (note that the hidden 

layers of the model with only output layer retraining are 

identical to those of the baseline model). The I-vector and t-sne 

were trained on the activations of all phonemes. Each type of 

symbol denotes a different phoneme.  

Comparing the different phoneme clusters in the two 

models seems to suggest a slight improvement of the phoneme 

clusters for the fully retrained model compared to the baseline 

model. The clusters of the retrained model seem to be organized 

in a better spherical structure which is the behavior previous 

noticed in the I-vector representation of the hidden layer. The 

clusters seem to be denser for the baseline model, while the 

distances between the clusters seem to be more spread out for 

the retrained model, compare, e.g., the red crosses (/f/) and 

black dots (/s/) (right-side of Figures 3 and 4) and the purple 

stars (/o/) and blue crosses (/ɔ/) left-side of Figure 3, left-bottom 

of Figure 4). Also the well-performing newly created phoneme 

vectors seem to be well defined, e.g., /mw/ (green +). 

Figure 3. t-sne visualization of the activations of the 6th 

hidden layer to the Mboshi speech for the baseline model. 

Figure 4. t-sne visualization of the activations of the 6th 

hidden layer for the fully retrained model. 

4. Discussion 
We here apply our previously proposed cross-language 

definition of acoustic units approach [3] to build an ASR system 

for the low-resource language Mboshi through the adaptation 

of an ASR system of the high-resource language Dutch. After 

adaptation of the output layer of the baseline Dutch system to 

only contain Mboshi phones, and then retraining on the Mboshi 

self-labels, we obtained an improvement of 6.33% and 6.62% 

for the fully retrained model and the model with only output 

layer retraining, respectively. The same method when applied 

to Dutch to English in [3], showed an increase of .87% absolute. 

These results cannot be directly compared however as we report 

frame accuracies while [3] reports phone error rates. Thus, 

although experiments in cross-language ASR adaptation tend to 

report that adaptation between related languages is more 

successful than adaptation among unrelated languages [2], 

these results show that the proposed approach also works for 

unrelated language pairs such as Dutch-Mboshi. The 

visualizations seem to support the conclusion that retraining 

with self-labels improves the phoneme representations. 

The second aim of this paper was to investigate the effect 

of retraining only the output layer as was done in [3] or 

retraining the full DNN model with the self-labels on the 

classification performance and the definition of the acoustic 

units. The differences between the two training methods were 

small; with a slightly overall performance for the output only 

retraining method but a slightly better phoneme representation 

for the full DNN model retraining method.  

The in-depth analyses showed a mixed picture: some 

phonemes showed improvement after retraining, others a 

deterioration, while again others are seemingly so poorly 

defined that they are never correctly classified. The lack of an 

improvement for phonemes after retraining with the self-labels 

could be due to data scarcity as many of these phonemes had 

relatively few training frames, while DNNs are known to be 

data hungry. Another possible reason is a suboptimal 

initialization of the feature vectors. Future research will 

improve the initialization. The phoneme confusion analyses 

showed that many of the phonemes, including consonants, were 

confused with vowels. This finding is again likely to be 

explained by data scarcity: there was a magnitude more training 

data for the vowels than for the other phonemes. Furthermore, 

many of the phonemes were confused with / mbv/ and /n/. 

Future work will focus on the question why some phoneme 

vectors benefit from retraining with the self-labels while others 

do not, and improve the approach accordingly. Moreover, 

future work will investigate the use of data augmentation 

methods to increase the importance of the good data [15]. An 

important step will be the step from frame level classification 

to phoneme identification, and subsequently word 

segmentation. Finally, we will continue to improve our 

visualization technique for the visualization of the hidden and 

output layers of DNNs as they provide useful information. 

To conclude, we successfully applied our cross-language 

definition of acoustic units approach to Mboshi. Results showed 

a fairly similar performance for the two training methods but 

slightly better phoneme representations for the fully retrained 

DNN. Visualizations were helpful in investigating the 

representation of the phonemes in the hidden and output layers 

and will be used in future research to improve the initialization 

of the phoneme vectors and the retraining of the vectors.   
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