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ABSTRACT

Acoustic Landmarks have been shown to improve frame-
synchronous HMM-based speech recognition when applied
as a secondary channel or in a post-processing step. Land-
marks are, furthermore, somewhat language-universal, there-
fore their characteristics can potentially be learned once from
a suitably labeled corpus and rapidly applied to many other
languages in a scalable fashion. Earlier works tend to use ap-
proaches that add-on significantly to the overall complexity
of the system. This work proposes using Landmarks as the
secondary task in multi-task learning, thereby obtaining the
benefits of Landmark without increasing decoder complex-
ity. Our experiments demonstrate improvement, up to 3%,
in both a well-resourced source language (English) and an
under-resourced adaptation target language (Iban), thereby
supporting the hypothesis that Landmarks have useful and
complementary information to phone labels, both monolin-
gually and cross-lingually.

Index Terms— Acoustic Landmarks, Under-resourced
ASR, Multi-task Learning

1. INTRODUCTION

Acoustic Landmark theory [1, 2] suggests that there exist
abrupt changes and local extrema in both speech articulation
and spectrogram, that these key acoustic time-points offer un-
usually high information density about the phonetic content
of the signal, and that speech perception uses the salience of
these events to speed up the process of speech understanding.
These instantaneous acoustic events, and the surrounding
acoustic cues that label them, are called acoustic landmarks.
Studies like [3, 4] have shown that classic frame-synchronous
ASR can benefit from Landmark information, but often [3] at
the cost of expensive additional computation. This work con-
siders improving ASR accuracy through the help of acoustic
Landmarks, by improving acoustic model (AM) quality at the
training phrase through Multi-task Learning (MTL) [5].

MTL has shown the ability to improve the performance
of speech models, especially those based on neural net-
works [6, 7, 8]. In MTL, if the secondary task complements

the primary task, there is a chance that the jointly trained
model offers higher accuracy [6]. Landmark detection could
potentially be an ideal secondary task for automatic speech
recognition (ASR; Fig 1), since it detects instantaneous events
that are informative to phone recognition. Also, because they
are based on universal properties of speech production and
speech perception, Landmarks are likely to be more useful
for cross-language ASR adaptation [9] and are more noise-
immune [3, 10] than other secondary tasks that have been
used in MTL. These characteristics are especially helpful
for under-resourced languages: in an under-resourced lan-
guage, training data may be limited, e.g., there may be little
or even no transcribed speech. A Landmark-based system
trained on a well-resourced language might be adapted to an
under-resourced language, thus improving ASR accuracy in
the under-resourced language.

Fig. 1. MTL Neural Network Jointly Trained on Phone States
and Landmark Types

The key contributions of this work are experimental find-
ings supporting the hypothesis that acoustic Landmark infor-
mation can reduce ASR error rate through MTL. This finding
is consistent across two corpora (TIMIT [11] and Iban [12])
and both mono- and tri-phone AM. We also observed evi-
dence that acoustic Landmark detectors can be used to aid
MTL cross-lingually, in the sense that our Landmark detector
trained in English seems to benefit an Iban ASR. Key method-
ology and techniques used to apply the Landmark theory to
MTL are explained in Sec. 3. Results are presented in Sec. 4,
and the paper concludes and discusses future work in Sec. 5.



2. BACKGROUND

The theory of acoustic Landmarks assumes that the phonemes
of every language are derived from distinctive features:
approximately-binary speech sound categories defined by
properties of speech perception [13], or production [1], or
statistically frequent patterns of phonology [14]. Distinc-
tive features are perceived through acoustic cues scattered in
speech. The locations at which these cues occur in speech are
called acoustic Landmarks. Speech processing systems using
distinctive features have multiple advantages over phoneme
based systems. As opposed to phonemes, which are lan-
guage dependent, distinctive features are more universal.
This advantage offers the latter stronger portability across
languages [9]. In addition, distinctive-feature-based sys-
tems tend to be more noise-immune [3, 10]. It has been
shown [3, 4] that phone-based ASR can benefit from the use
of landmark and distinctive feature information, e.g., in a
side channel, or in a post-processing phase. More details on
Landmark definition and their location can be found in Sec 3,
where we label the Landmarks according to human annotated
phone boundaries from the TIMIT corpus.

2.1. Multi-task Learning

Multi-task Learning (MTL) [5] has shown the ability to im-
prove statistical model performance by jointly training a
single model for multiple purposes. The multiple tasks in
MTL share the same input, but generate multiple outputs pre-
dicting likelihoods for a primary and one or more secondary
tasks. When the multiple tasks are related but not identical, or
(in the ideal case) complementary to each other, MTL mod-
els offer higher accuracy [6]. A number of works [6, 7, 8]
have proved MTL to be effective on speech processing tasks.
Among them [8] proved MTL effective at improving model
performance for under-resourced ASR.

Most works mentioned above [6, 7, 8] leverage the flexi-
bility of Deep Neural Network (DNN) based classifiers with
Softmax output layers. The output of a typical Softmax DNN,
Pc(x), withC distinctive classes, is calculated by Eq 1, where
x is the input feature, and yi represents the ith output from the
immediate preceding layer, right after the affine transform,
without applying a non-linear operation.

Pc(x) =
exp(yc)∑C

i=1(exp(yi))
,∀c = 1...C (1)

Experiments in this paper employed cross-entropy as the
cost for network training. The sum of cross-entropies, L, be-
tween each individual output and their expected value, li, as
in Eq 2, is back-propagated to update the neuron weights.

L =

C∑
i=1

(li log(Pi(x))) (2)

When we conduct MTL, for the same input x, we pre-
pare two sets of labels. The label lphi specifies the phone or

triphone state associated with a frame, while llaj encodes the
presence and type of acoustic Landmark. Eq 2 becomes Eq 3,
where α is a trade-off value we use to weight the two sets of
labels. We sweep through a small list of candidate α’s to find
the value that returns the best result on development test data.

Lmtl = (1−α)
Cph∑
i=1

(lphi log(P ph
i (x)))+α

Cla∑
j=1

(llaj log(P la
j (x)))

(3)

2.2. The Iban Corpus

Training under-resourced speech processing systems can be
challenging [8]. Landmark based speech processing systems,
compared to classic frame-synchronous systems, are poten-
tially more promising to these tasks, because landmarks are
more portable across languages than phonemes [9] and more
noise-immune than static phonetic segments [3, 10]. For
these reasons we form the hypothesis that Landmark-based
models trained on resource-rich languages can be more ef-
fectively transfered to under-resourced languages than pure
phone-based models.

The under-resourced language studied in this paper is
Iban [12]. Iban is a language spoken in Borneo, Sarawak
(Malaysia), Kalimantan and Brunei. Malay tends to have
more clearly articulated consonants than most other Asian
and European languages (according to our own informal
perceptual survey of many languages). We chose Iban for
experiments because, if Iban consonants are articulated as
clearly as those of Malay, then we hypothesize that an Iban
ASR might gain particular benefit from a Landmark detector,
even if the Landmark detector is trained in a completely unre-
lated language (English). The Iban corpus contains 8 hours of
clean speech from 23 speakers, 17 speakers contributed 6.8h
of training data, and the test-set contain 1.18h of data from
6 speakers. The language model was trained on a 2M -word
Iban news dataset using SRILM [15].

3. METHODOLOGY

Landmark definitions in this paper, listed in Table 1, are based
primarily on those of [16], with small modifications. Modifi-
cations include the elimination of the +33% and -20% offsets
after the beginning or before the end of some phones, reported
in [16] and [17], in favor of the simpler definitions in Table 1.

We extracted Landmark training labels by referencing the
TIMIT human annotated phone boundaries. An example of
the labeling is presented in Fig 2. This example from [4] il-
lustrates the labeling of the word “Symposium”1. The figure
is generated using Praat [18].

1selected from audio file: TIMIT/TRAIN/DR1/FSMA0/SX361.WAV



Table 1. Landmark types and their positions for acoustic
segments, where ‘c’, and ‘r’ denote consonant closure, and
release; ‘start’, ‘middle’, and ‘end’ denote three positions
across acoustic segments, respectively.

Manner of Articulation Landmark Type and Position
Vowel V: middle
Glide G: middle

Fricative Fc: start, Fr: end
Affricate Sr,Fc: start, Fr: end

Nasal Nc: start, Nr: end
Stop Closure Sc: start, Sr: end

Fig. 2. Acoustic landmark labels for the pronunciation of
word “Symposium”.

3.1. Bootstrapping TIMIT for a Landmark Detector

All ASR systems in this paper use the feature extraction meth-
ods proposed in [7]. No speaker adaptation is used in any of
the ASR systems in this paper, because it is not yet clear how
to perform speaker adaptation for Landmark detectors; we re-
serve that problem for future papers. The network is initial-
ized using Deep Belief Network (DBN) [19] pre-training.

When applying the Landmark labels to MTL, we did en-
counter difficulties. We failed to realize that our main goal
was to train a Landmark detector that can effectively compli-
ment the phone state recognizer, not to train a Landmark de-
tector that can optimally detect Landmark locations. An MTL
that over-emphasizes the Landmark detection criterion tends
to perform poorly as an ASR AM, because Landmarks are
relatively infrequent compared to phone-state-labeled speech
frames: every frame has a phone label, but fewer than 20%
of frames have a Landmark label. Because of the sparsity
of Landmark-labeled frames, weighting the MTL criterion
to emphasize Landmark accuracy increased the number of
frames receiving the same label, “No Landmark,” and reduced
the benefit of Landmark detection as a secondary task for
MTL. We explored different ways to adjust the Landmark
labels. Table 2 covers some of these adjustments. When
we label the Landmark on only the frame in which it occurs
(ver1), the MTL AM returns higher WER than the baseline

in Iban. Expanding the range of a Landmark to include the
nearby 2 frames (ver2) returned the best result. The third
labeling (ver3) expanded the Landmark region, but split the
center frame and nearby frames into different classes. ver4
marked Landmark labels similarly to ver3, but distinctly la-
beled frames before vs. after the Landmark. Expanding the
domain of the Landmark was helpful (ver2), but separate
classes for frames far from the Landmark (ver3 and ver4)
seemed to be less helpful. To further address the imbalance
among different Landmark classes, the training criterion was
computed using a weighted sum of training data, with weights
inversely proportion to the class support.

Table 2. Iban Tri-phone WER Comparison of Different Land-
mark Labeling Techniques

Baseline ver1 ver2 ver3 ver4
18.24 18.31 18.01 18.16 18.11

3.2. Cascading the MTL to Iban

After we trained a Landmark detector on TIMIT, we ran the
detector on Iban. The English-trained Landmark detector out-
put is used to define reference labels for the secondary task of
the Iban acoustic model MTL. An example of the detector
output on an arbitrary utterance2 in Iban is given in Fig 3.
We found that the results are good at outlining Fricative land-
marks. The detector can also find Stop Closure Landmarks
near the correct locations, but with less precision than the
Fricative Landmarks. The performance on Vowel and Glide
Landmarks is only fair: the detector often mixes up the two
classes, and incorrectly labels non-Vowels as Vowels.

Fig. 3. Landmark Detection Result on Iban for utterance
ibm 003 049, pronouncing selamat tengah ari (s-aa-l-a-m-
a-t t-aa-ng-a-h a-r-i in Iban phone set). Transcription labels:
e=empty (no Landmark); fr, fc, sr, sc, nr, nc, v, g are as in
Table 1.

We experimented with multiple ways to initialize the
Landmark detector and the phone recognizer in the second

2iban/data/wav/ibm/003/ibm_003_049.wav



language. We found that using a network trained through
MTL in TIMIT to initialize the MTL network in the second
language yields the best results. This is similar to to cascad-
ing phone state recognition and Landmark detection MTL in
Iban after the same tasks are done in (TIMIT) English. We
found the technique marginally but consistently outperforms
other initializations including DBN.

4. RESULTS

All experiments were conducting using the Kaldi [20] tool-
box. We extracted 40-dimensional log-mel-filter-bank (FBank)
features, and concatenated them with their delta and double-
delta coefficients, then spliced 11 consecutive frames from the
surrounding context to form an input vector for each frame
(10ms shift, 25ms span). The AM is a deep neural network
with 4 hidden, fully-connected layers, 2048 nodes/layer. The
same features and network structure were used for both the
Landmark detector, the MTL model and the baseline. The
baseline is initialized using a DBN.

Results are reported in Table 3 for both English (TIMIT)
and Iban. The main goal of this study is to examine whether
Landmark-based MTL is useful cross-lingually; TIMIT re-
sults are reported to indicate the performance of Landmark-
based MTL in the source language, prior to cross-language
adaptation. Similar tradeoffs were observed in both TIMIT
and Iban with respect to model tuning and parameter selec-
tion. On development test sets in both corpora, the value
α = 0.2 returned the lowest error rate (with little variability in
the range 0.1 ≤ α ≤ 0.3), and was therefore used for evalu-
ation. Higher values of α (higher weight for the Landmark
labels) resulted in higher ASR error rates. The Landmark
detector achieves 80.11% frame-wise accuracy in validation,
which is lower than Landmark detection accuracies reported
in some other studies, apparently because the Landmark cri-
terion was de-emphasized by MTL. Conversely, phone error
rate (PER) was reasonably good: 20.6% for the baseline sys-
tem, and 20.0% for the MTL system, as compared to 22.7%
for the open-source Kaldi tri4 nnet recipe.

Decoding results for Iban are reported using Word Error
Rate (WER), because the Iban corpus is distributed with au-
tomatic but not manual phonetic transcriptions. The compar-
ison between PER in TIMIT and WER in Iban permits us to
demonstrate that Landmark-based MTL can benefit PER in
a source language (English), and WER in an adaptation tar-
get language (Iban). The triphone-based ASR trained without
MTL on TIMIT, then adapted to Iban, achieves 18.24% WER;
a system that is identical but for the addition of Landmark-
based MTL can achieve 18.01% WER. Neither system in-
cludes speaker adaptation, and therefore neither system is bet-
ter than the 17.45% state of the art WER for this corpus3.

3https://github.com/kaldi-asr/kaldi/blob/master/
egs/iban/s5/RESULTS

Table 3. Decoding Error Rate for mono-phone (Mono) and
tri-phone (Tri) on TIMIT and Iban.

Corpus TIMIT (PER) Iban (WER)
Acoustic Model Mono Tri Mono Tri
Baseline 24.6 20.6 24.58 18.24
MTL 24.2 20.0 24.11 18.01

As we can see in Table 3, in all cases, regardless of AM
and corpus, the ASR system jointly trained with Landmark
and phone information returns lower error rate. The PER
reduction on TIMIT is greater than the WER reduction on
Iban, yet since the Landmark MTL models consistently re-
turn lower WER across different AMs, we find the tendency
promising.

5. DISCUSSION AND FUTURE WORK

This study confirms that acoustic Landmarks convey informa-
tion complementary to phone recognition, as has been shown
in previous work [3, 4], and confirms that Landmark detec-
tors can be trained in one language and applied in another,
as has been shown by [9]. This study is the first to demon-
strate the use of Landmark detection as the secondary task in
MTL, and to demonstrate a consistent resulting drop in ASR
error rates, in both a well-resourced source language and an
under-resourced target language.

While a cross-language Landmark detector provides use-
ful information complementary to the orthographic transcrip-
tion, visual inspection indicates that a cross-language Land-
mark detector is not as accurate as a same-language Land-
mark detector. Future work, therefore, will train a more accu-
rate Landmark detector, using recurrent neural network meth-
ods that do not depend on human-annotated phone bound-
aries, and that can therefore be more readily applied to multi-
lingual training corpora.
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