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Abstract
Detection of acoustic phonetic landmarks is useful for a va-
riety of speech processing applications such as automatic
speech recognition.The majority of existing methods use Mel-
frequency Cepstral Coefficients (MFCCs) describing the short
time power spectral envelope of the speech signal. This pa-
per hypothesizes that a different feature extraction method
can be used to complement MFCCs by capturing more com-
plex transient acoustic cues. The proposed feature extraction
method quantizes spectrogram textures using local binary pat-
terns (LBP). This paper particularly exploits landmark based
stop consonant detection. Both methods outperform the previ-
ous work on stop consonant detection and the latter is partic-
ularly appealing for real time detection in which computation
efficiency matters.
Index Terms: acoustic phonetic landmark detection, stop con-
sonants, local binary pattern, time-frequency features

1. Introduction
An acoustic phonetic landmark is a perceptually salient instan-
taneous acoustic event caused by an extremum or discontinuity
in the pattern of airflow through the mouth [1]. It is claimed
a consonant closure followed by a consonant release is suffi-
cient to determine the consonant being uttered [2]. According
to [3], automatic speech recognition can be decomposed into
a collection of landmark detection tasks. In the speech syn-
thesis literature, landmark detection is called ”phone segmen-
tation” and is an essential pre-requisite for good quality con-
catenative synthesis [4]. Scientific studies of the acoustic corre-
lates of prosody [5] and rhythm [6], similarly, depend on con-
sonant/vowel segmentation as a pre-requisite. The study of stop
consonant detection is particularly interesting because it is one
of the phone labeling tasks performed by human transcribers
with highest accuracy, e.g., with 99% precision and 99% re-
call at 6dB SNR [7]. Once detected, a stop consonant can be
classified by a neural net with 98.5% accuracy [8], but the best
published figures for automatic stop consonant detection from
untranscribed speech still have unreasonably high equal error
rates (e.g., 16.5% [6]).

The selection of appropriate features is crucial to the per-
formance of detection. A good feature produces representations
that distinguish events from non-events using as few dimensions
as possible. For phonetic landmark detection, manually selected
features followed by support vector machine have shown rea-
sonable results. In particular, a three dimensional feature vector
consisting of log of total energy, log of energy above 3 kHz
and spectral flatness is computed for each frame for stop con-
sonant detection [6]. However, the manually selected features
are difficult to generalize to other phonetic landmarks, because
the choice of acoustic features varies with respect to the type of
phonetic landmarks. Recently, landmark detection is primarily

based on mel-frequency cepstral coefficients (MFCCs) [9] [10].
MFCCs capture the shape of the vocal tract by computing the
short-time spectral envelope. MFCCs are computed over each
frame of the speech signal, during which the signal is assumed
to be stationary. However, MFCC features may not be suf-
ficiently discriminative for phonetic landmarks because land-
marks are transient non-stationary acoustic events.

In order to overcome the above disadvantages, this pa-
per describes a new type of feature characterizing the acoustic
structure from the texture feature of speech spectrograms. A
speech signal can be transformed into a two-dimensional time-
frequency representation as a spectrogram, upon which image
processing techniques can be applied. Spectrogram based audio
signal processing gave favorable results for acoustic scenario
detection and sound classification [11] [12] [13]. The proposed
feature is motivated from an image object detection technique,
the local binary pattern (LBP), to capture the transient change
of phonetic landmark as an object on the spectrogram of the
speech signal. LBP along with its variants are highly discrim-
inative and compact for image texture classification. However,
the classic LBP is highly affected by the fluctuation of pixel val-
ues seen in the spectrogram. Thus, the proposed method thresh-
olds the pixels using the mean of the local patch and weights
the corresponding frequency counts using the standard devia-
tion of the local patch in LBP computation in order to mitigate
the fluctuation of pixels values. Meanwhile, the dimension is
reduced by considering only the uniform LBP to further reduce
the effect of noisy pixels. Finally, L2-Hellinger normalization
is applied to the LBP feature to make it more discriminative for
SVM [14] classification using a linear kernel.

In this paper, we particularly test the proposed method for
stop consonant detection, because stop consonants display dis-
tinctive transient acoustic cues that are perceptually salient dur-
ing speech recognition. LBP will be able to handle most other
landmarks if it can successfully capture the rapid acoustic struc-
tural change of a stop closure followed by stop release. The
proposed feature extraction method is tested on the TIMIT cor-
pus that contains 14000 stop consonant audio clips. The pro-
posed LBP shows a small non-significant accuracy gain rela-
tive to the MFCC baseline, at significantly lower computational
cost. More importantly, it provides useful insights in how stop
consonants are discriminated from other phones acoustically.

2. Improved local binary pattern
The local binary pattern (LBP) has been a discriminative and
compact image texture feature representation for visual ob-
ject detection and classification [15]. By regarding the time-
frequency spectrogram as an image, LBP is able to capture the
transient temporal and frequency variations of the landmark as
the gray level change of pixels across the time dimension and
frequency dimension respectively.



The original LBP is defined in a 3× 3 local patch centered
at each pixel of the region of image being analyzed, where the
neighboring 8 pixel values are thresholded using the center pixel
value. The location of the pixel being compared is set to 1 or 0
depending on if it is higher or lower than the center pixel value.
The 3×3 binary pattern is then unwrapped clock-wisely around
the center pixel into a binary bit string, which can be mapped to
a decimal number whose respective frequency counts are sum-
marized in a histogram. The major problem with the original
LBP is that it is easily affected by pixel value fluctuation. In
particular, the original LBP only takes into account the relative
magnitude of pixel values without considering the actual differ-
ence between them, which makes the pixels having close pixel
values vulnerable to pixel fluctuations. If one pixel is slightly
lower than the threshold, a small amount of fluctuation can flip
the corresponding bit from 0 to 1, which breaks up the local
pattern. As a result, patches distorted by noise with a small
variance can be mistakenly mapped to the incorrect local pat-
terns.

Statistics based uniform LBP [11] is employed in this pa-
per for enhancing the noise robustness and reducing the dimen-
sionality of the original LBP. First, the mean pixel value of the
local patch is used instead of the center pixel value to threshold
the neighboring pixel values including the center pixel value,
because the mean pixel value is relatively insensitive to pixel
value fluctuations. Let gi and µc be the i th pixel value and the
mean pixels value of the local patch respectively. The binary
pattern is calculated and converted to a decimal index as

LBPT,F =

T ·F−1∑
i=0

f(gi − µc)2
i, f(x) =

{
1, x ≥ 0

0, x < 0
(1)

where gi is unwrapped clock-wisely as shown in Figure 1c, and
T and F are the dimension of the local patch along the time
axis and frequency axis respectively. Equation 1 generates 2T ·F

binary patterns corresponding to decimal indexes in the range
from 0 to 2T ·F − 1 whose respective frequencies are counted
into the histogram. Second, the histogram accumulates the stan-
dard deviation of the local patch instead of the frequency count
for its corresponding binary local pattern. In particular, the lo-
cal patch scans over each pixel in region A of the image being
analyzed and accumulates the standard deviation of the patch,

σc =
√∑T ·F−1

i=0 (gi − µc)2 into the corresponding decimal in-
dexed location of the histogram as expressed in Equation 2

xi =
∑
c∈A

I{LBPdec
T,F

=i−1}σc, i = 1, · · · , 2T ·F (2)

where LBP dec
T,F is the decimal value of the binary pattern, i

starting from 1 is the decimal index of the corresponding uni-
form binary pattern in the histogram, c is the center pixel of the
local patch, and I{·} is the indicator function that equals to 1
only if the equation in the brackets holds and to 0 otherwise. An
example schematic is shown in Figure 1. The local binary pat-
terns corresponding to patches with small standard deviations
are vulnerable to pixel value fluctuations, thus their frequency
counts in the histogram are scaled down by their small standard
deviations. On the other hand, the binary patterns correspond-
ing to patches with large standard deviation are considered more
noise-robust and significant, thus their frequency counts in the
histogram are emphasized by scaling up by their large standard
deviations.

It is worth noticing that the number of different binary pat-
terns grows exponentially with respect to the number of pixels
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Figure 1: Each local patch (a) is encoded into a local binary
pattern (b) and accumulates σ = 31 instead of 1 into the his-
togram (c) at the corresponding decimal index.
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Figure 3: Spetrogram of transition from /dcl/ to /d/ (20ms frames
w/2ms shift). The boxed region is the extracted positive exam-
ple.

in the local patch. There are already 256 different binary pat-
terns for the 8 pixel patch. Large number of different binary pat-
terns results in higher dimensional and more sparse histograms,
which is likely to cause over-fitting and be more vulnerable to
noise. Ojala et al. [15] claim that the majority of the local bi-
nary patterns only have less than two 1-0 or 0-1 transitions when
their respective binary bit string is circularly connected to it-
self. Such patterns are referred to as the uniform binary patterns
that are most informative about the texture structure, while the
non-uniform patterns are considered insignificant and not noise-
robust for texture classification. Therefore, only uniform local
binary patterns are represented by distinctive bins in the his-
togram, while the non-uniform binary patterns are grouped into
one single bin in the histogram. Limitation to uniform binary
patterns not only reduces the histogram dimension, but also im-
proves the noise robustness of the pattern distribution. For an
8-bit patch, the histogram only has 59 bins, where the 1st bin
to the 58th bin count the weighted frequency of the 58 uniform
patterns, while the last bin counts all the non-uniform patterns.
A lookup table from the original binary patterns to the uniform
patterns is computed for mapping the bins of histogram.



Figure 2: Basic flow chart of LBP feature extraction

3. Classifier architecture
Stop burst is produced by a stop closure followed by a stop re-
lease, and is the most distinctive characteristic to indicate the
presence of a stop consonant [6]. Thus, any instant of a stop
closure followed by a stop release with the boundary between
them at the center is a positive example for the SVM. Every-
thing else including vowels, fricatives, nasals, silences, etc. are
considered as negative examples for the SVM. The following
sequence shows a typical positive example1,

· · · ih− | − dcl−| − d− | − ah− | · · ·
tbegin tcenter tend

where the center time of the frame is at the boundary between
stop closure and stop release. The begin time and the end time
are equidistant from the center time to include a certain amount
of context information. The spectrogram of the above utterance
is shown in Figure 3. Each positive or negative example is cut
from the speech signal according its phone level transcription.

3.1. Mel-frequency cepstral coefficient

As our baseline feature, 13 dimensional MFCC and its deltas
and delta-deltas (39 dimensions in total) are extracted for each
frame, with 20ms frame length and 2ms frame shift. We set the
frame shift to 2ms because it is the time resolution of human
auditory systems for broad band noise signals [18]. The MFCC
features of 11 consecutive frames centered at the boundary be-
tween stop closure and stop release are concatenated to form a
39× 11 matrix [x̄c−5, · · · x̄c · · · , x̄c+5], where x̄c−5 and x̄c+5

are centered at (tcenter−10) ms and (tcenter + 10) ms respec-
tively. The 11 feature vectors are transposed and horizontally
concatenated to produce a training or testing token given as a
1 × 429 row vector x̄k =

[
x̄Tc−5, · · · x̄Tc · · · , x̄Tc+5

]
. Finally,

CMVN [19] is applied by subtracting the mean and dividing the
standard deviation of each dimension.

We extracted 14000 positive and negative training tokens
respectively from TIMIT. All the tokens form a 28000 × 429
MFCC feature matrix for the SVM.

3.2. Local binary pattern extraction

The real-valued time-frequency spectrogram is calculated us-
ing short time Fourier transform (STFT) of length 512 for each
frame, with 20ms frame length and 2ms frame shift. Statistics
based uniform LBP summarizes each frequency bin along the
time axis into a sparse histogram x̄. Related works [11] [12]
have shown that local patch having around 8 pixels gives the

1This paper uses TIMIT’s ARPABET phoneme code [16] rather than
IPA, because IPA does not distinguish the closure and release subseg-
ments of a stop consonant.

best performance. We primarily exploit the 2×4 and 4×2 time-
frequency patches, which produce 59-dimensional frequency-
wise histograms using uniform binary patterns. Explicitly, the
proposed feature extracts a histogram at each frequency bin,
thus the area defined by Af = {a = (t′, f ′)|∀t′, f ′ = f}
to produce a feature vector x̄(f) of length 59 at each frequency
bin. It is worth mentioning that the local binary pattern distri-
butions of two different temporal alignments of the same signal
are completely different. Therefore, the global temporal varia-
tion is marginalized out so that each frequency-wise histogram
is invariant to time shifts across utterances and only describes
the local transient temporal variations of the stop consonant.

To better match the feature characteristics to the character-
istics of human hearing and further reduce the frequency di-
mensionality, 30 triangular filtersHk(f) spaced uniformly in an
equivalent-rectangular-bandwidth (ERB) frequency scale [20],
where k is the ERB frequency index and f is FFT bin number,
are applied to the 257× 59 feature matrix. Given the frequency
response of each filter bank Hk(f), the frequency-wise resam-
pled feature matrix is calculated as

x̄k =
∑
f

Hk(f)x̄(f), x̄ =
[
x̄T1 , · · · , x̄TK

]T
. (3)

Finally, the rows of the filtered feature matrix are horizontally
concatenated into a feature vector of length 1770, after which
the L2-Hellinger normalization [21] that is effective for mea-
suring similarities between histograms is applied. Stacking all
the tokens vertically gives a 28000 × 1770 token matrix. The
basic flowchart is shown in Figure 2.

4. Experimental results
4.1. Overall Performance

We evaluate the performance of the proposed method on stop
consonant detection using the TIMIT corpus. The TIMIT cor-
pus contains 6300 sentences spoken by 630 different American
English speakers. The 28000 training tokens are extracted from
the full training set of TIMIT, and the 8000 testing tokens are
extracted from the full testing set of TIMIT. The ROC curve
for our baseline MFCC feature and our proposed LBP feature
is shown in Figure 4. It can be seen that the LBP slightly out-
performs the MFCC, especially in terms of the false negative
rate. The computation time of training and testing using LBP
is more than 10 times less than that of MFCC. A more compre-
hensive comparison table shows our proposed method has the
state-of-art performance.

We test the performance for different patch sizes and the
best performance is obtained on 2× 4 (time × frequency). The
performance is better for local patches with higher frequency
dimension than time dimension. The most discriminative LBPs
all show energy onset in the time dimension; a 2× 4 patch can
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Figure 4: The ROC curve for MFCC and LBP
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Figure 5: The ROC curve for MFCC and LBP

Table 1: Equal Error Rate (EER) and area under ROC curve
(AUC) of stop consonant detectors in this paper, and in other
published work if applicable.

Method EER.% AUC.%
Our MFCC 4.42 0.988
Our LBP 3.83 0.991
Borys’ MFCC [9] 6.24 NA
Niyogi et al. [6] 16.50 NA

Figure 6: The frequecny-wise distribution of the 15 most dis-
criminative patterns. Darker gray level indicates the corre-
sponding LBP is activated by the SVM with higher weight.
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Figure 7: Portions of the feature vectors of positive and negative
examples display different periodic patterns.

represent frequency-dependent onset patterns, which is appar-
ently more useful than the extra temporal information in a 4×2
patch.

4.2. The Sparse Pattern of the LBP Feature

Although the dimension of the proposed LBP feature is 1770. It
turns out that it displays a very consistent sparse pattern, which
greatly facilitates dimension reduction.

Figure 3 shows the average value of a portion LBP feature
across all positive examples (upper panel) and negative exam-
ples (lower panel). As can be seen, both averaged features dis-
plays similar sparse patterns, i.e. the dimensions of very small
values are similar. Therefore, an intuitive dimension reduction
approach is to keep only the dimensions with value greater than
a threshold. After removing the small spikes, the feature di-
mension drops from 1770 to 1051, which slightly improves the
performance and greatly reduces computation time.



4.3. Discriminative Patterns

This subsection analyzes the most discriminative local time-
frequency patterns, which gives us useful insights into the fre-
quency and temporal characteristics of stop consonants. In
SVM, the magnitude of the weights implies the importance of
the corresponding feature dimension on the classification task.
Recall that in the proposed LBP-based classifier, each feature
dimension corresponds to a local pattern in a specific frequency
bin. Therefore, we can evaluate the level of discrimination of
each pattern by summing all the weights that correspond to this
pattern across frequencies.

Figure 5 plots the 14 most important patterns ranked by
their importance, and figure 6 plots their distribution of impor-
tance across frequencies. There are several useful findings.

First, we can observe a strong asymmetry along time axis.
As time proceeds, we can see a non decreasing energy trend,
namely the number of 1’s in the right column is almost always
no smaller than that in the left column, except for pattern 38.
This reflects that one of the most important temporal character-
istics of stop consonant is energy burst, i.e. the energy increases
abruptly as time proceeds, which is a key distinctive feature of
stop consonant and is used as the baseline for stop consonant
detection by Niyogi et al. [6].

More specifically, patterns 1, 2, 4, 6, 7 and 8 best capture
the energy burst pattern, and most of them rank very high. In
particular, pattern 26, which ranks 1st in importance, is the most
typical energy burst pattern. According to its frequency dis-
tribution of importance as shown in figure 6, there are 3 fre-
quency bands where the energy burst is most significant: 0.8-2
kHz, 4-5.6 kHz, and 6-7.5 kHz, which agrees well with the find-
ings in [22], which identifies the most discriminative frequency
bands of stop consonants for human perception.

On the other hand, the patterns are quite symmetric along
frequency axis. For example, pattern pair 3 and 5, 6 and 8, and
13 and 14 are completely symmetric along the frequency axis,
and the rankings within a pair are quite close. This suggests
that the rise and fall in energy along frequency axis is quite
balanced. In particular, as frequency increases, patterns 5, 11
12 and 14 depict energy rises, and patterns 3, 9 and 13 depict
energy fall. These patterns together describe the fine spectral
structure. In terms of distribution in frequency, these patterns
concentrate in low frequencies. One possible explanation is that
in low frequency, the spectral structure of different phones, par-
ticularly voiced and unvoiced phones, differ more than in high
frequency, where voiced energy is heavily corrupted with noise
and aspiration. Hence, the spectral structure in low frequency is
more discriminative.

5. Conclusions
In this paper, we exploit the discriminative power of the statis-
tics based uniform local binary pattern features (LBP) for stop
consonant detection. The LBP extracts acoustic phonetic struc-
tural change as texture feature by viewing the time-frequency
spectrogram as an image. Our LBP-based method successfully
extracts the discriminative features and shows superior perfor-
mance for landmark-based stop consonant detection with high
computation efficiency.
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