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Abstract 
A major problem with dialectal Arabic speech recognition is due to the sparsity of speech resources. In this paper, we propose a trans-
fer learning framework to jointly use large amount of Modern Standard Arabic (MSA) data and little amount of dialectal Arabic data to 
improve acoustic and language modeling. We have chosen the Qatari Arabic (QA) dialect as a typical example for an under-resourced 
Arabic dialect. A wide-band speech corpus has been collected and transcribed from several Qatari TV series and talk-show programs. 
A large vocabulary speech recognition baseline system was built using the QA corpus. The proposed MSA-based transfer learning 
technique was performed by applying orthographic normalization, phone mapping, data pooling, acoustic model adaptation, and sys-
tem combination. The proposed approach can achieve more than 28% relative reduction in WER.  
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1. Introduction 

Arabic language is the largest still living Semitic lan-
guage in terms of the number of speakers. More than 300 
million people use Arabic as their first native language 
and it is the 6

th
 most widely used language based on the 

number of first language speakers. 
Modern Standard Arabic (MSA) is currently considered 

the formal Arabic variety across all Arabic speakers. 
MSA is used in news broadcast, newspapers, formal 
speech, books, movies subtitling, and whenever the target 
audience or readers come from different nationalities. 
Practically, MSA is not the natural spoken language for 
native Arabic speakers. MSA is always a second lan-
guage for all Arabic speakers. In fact, dialectal (or collo-
quial) Arabic is the natural spoken variety of Arabic in 
everyday life communications. 

A significant problem in Arabic automatic speech 
recognition (ASR) is the existence of many different Ar-
abic dialects (Egyptian, Levantine, Iraqi, Gulf, etc). Eve-
ry country has its own dialect and usually there exist dif-
ferent dialects within the same country. Moreover, the 
different Arabic dialects are only spoken and not formally 
written and significant phonological, morphological, syn-
tactic, and lexical differences exist between the dialects 
and the standard form. This situation is called Diglossia 
(Ferguson, 1959). 

Because of the diglossic nature of dialectal Arabic, little 
research has been done in dialectal Arabic ASR, or in the 
use of dialect in any natural language processing tasks. 
For MSA, on the other hand, a lot of research has been 
conducted. The limited research done for dialectal Arabic 
ASR is also due to the sparsity of dialectal speech re-
sources for training different ASR models. 

To tackle the problem of data sparsity, Kirchhoff and 
Vergyri (2005) proposed a cross-lingual approach where 
they used pooled MSA and dialectal speech data in train-
ing the acoustic model and achieved around 3% relative 
reduction in WER.  

Similarly, in (Huang and Hasegawa-Johnson, 2012), a 
joint cross-lingual training method based on the similarity 
between phonemes in MSA and dialectal speech data also 
showed improvements in phone classification tasks. 

Elmahdy et al., (2010) proposed another cross-lingual 
approach based on acoustic model adaptation, which re-
sulted in about 12% relative reduction in WER. Acoustic 
model adaptation can perform better than data pooling 
when dialectal speech data are very limited compared to 
existing MSA data, and adaptation may avoid dialectal 
acoustic features masking by large MSA data as in the 
data pooling approach.  

In the DARPA GALE project (Mangu et al., 2011), 
they have trained the acoustic model using large amount 
of speech data collected from various news channels. 
Evaluation was performed on news speech and conversa-
tional speech. Conversational speech is mostly spontane-
ous and includes significant percentage of dialectal Ara-
bic as well as MSA. However the system was not evalu-
ated or adapted with a specific under-resourced Arabic 
dialect. Moreover, most of the conversational data in the 
GALE project are coming from new broadcasts, and we 
have noticed that the majority of speakers tend to speak 
in MSA rather than in their own Arabic dialect. 

In this paper, we have chosen Qatari Arabic (QA)
1
 as a 

typical example for an under-resourced Arabic dialect. 
Despite the huge differences between QA and MSA, we 
show how to benefit from large existing MSA speech and 
text resources. In the proposed framework, MSA data and 
QA data are jointly used in training improved acoustic 
and language models for QA.  

Since transcription conventions may be different be-
tween MSA and dialectal Arabic, we show how to apply 
phone mapping across MSA and dialectal Arabic. In ad-
dition, we propose to apply data pooling followed by 

                                                      
1
 QA is the Arabic dialect spoken in Qatar and it is a sub-

variety of the Gulf dialect. 



 

 

acoustic model adaptation for cross-lingual acoustic 
modeling and interpolation for cross-lingual language 
modeling.  

Our assumption is that the contribution of limited dia-
lectal speech data in a pooled acoustic model depends on 
the ratio between MSA data and dialectal data. Usually, 
there are far more data available in MSA than in the dia-
lect; so we expect little contribution of dialectal data to 
the final pooled acoustic model. In order to boost the 
weight of dialectal features, acoustic model adaptation 
techniques are applied on the pooled acoustic model us-
ing dialectal speech data. 

All our experiments have been conducted with QA in 
the domain of TV broadcasts. 

The remainder of this paper is organized as follows: 
Section 2 introduces the MSA and QA speech corpora. 
Section 3 and 4 present our speech recognition system 
and the baseline approach, respectively. Our proposed 
cross-lingual language modeling and acoustic modeling 
are discussed in Section 5 and 6, respectively. Section 7 
discusses the experimental results. Section 8 concludes 
this study. 

2. Speech Corpora 

2.1. Modern Standard Arabic 

The MSA corpus has been collected from the domain of 
news broadcast. The corpus consists of two speech re-
sources from the European Language Resources Associa-
tion (ELRA). All resources are recorded in linear PCM 
format, 16 kHz, and 16 bit. The ELRA speech resources 
are: 
 
 The NEMLAR Broadcast News Speech Corpus, 

which consists of about 40 hours from different radio 
stations: Medi1, Radio Orient, Radio Monte Carlo, 
and Radio Television Maroc. 

 The NetDC Arabic Broadcast News Speech Corpus, 
which contains about 22.5 hours recorded from Ra-
dio Orient.  
 

Detailed composition of the resources is shown in 
Table 1. 
 

Source Duration (hrs) 

Radio Orient 
Medi1 
Radio Monte Carlo 
Radio Tele. Maroc 

34.6 
9.5 
9.0 
9.3 

Total  62.4 

 
Table 1. Composition of the MSA speech corpus. 

2.2. Qatari Arabic Corpus 

We have collected the QA corpus from different TV se-
ries and talk show programs.  

Data are selected from programs in which the majority 
of speech segments is in QA; segments from each pro-
gram are selected after audition confirms the quality of 

the speech signal. The programs are: Tesaneef (popular 
Qatari series with almost 100% in QA), Sabah El-Doha 
(talk show with almost 80% in QA), and some episodes 
from Al-Jazeerah are selected if guest speakers are speak-
ing Qatari dialect.  

The corpus is recorded in linear PCM, 16 kHz, and 16 
bits. The overall length is 15 hours. Detailed composition 
is shown in Table 2. 

Transcription is performed manually in traditional Ara-
bic orthography. Five more Persian letters are used to 
indicate non-standard Arabic consonants. The letter چ 
denotes the /ʧ/ consonant, گ denotes /ɡ/, ڤ denotes /v/, ژ 
denotes /ʒ/, and پ denotes /p/. Some diacritic marks are 
added for ambiguous words. 

The following non-speech filler tags are transcribed: 
pause, breath, laugh, ah, noise, and music. Speech seg-
mentation is done with a 10 second maximum for each 
segment delimited by filler tags. 

The QA corpus is divided into a training set of 13 
hours, a development set of 1 hour, and an evaluation set 
of 2 hours. The training set is used either to train the QA 
baseline acoustic model or to adapt exiting MSA acoustic 
model. 
 

Source Duration (hrs) 

Tesaneef series 
Sabah El-Doha talk show 
Al-Jazeerah programs 

9.3 
2.0 
3.7 

Total  15.0 

 
Table 2. Composition of the QA corpus. 

3. System Description 
 

Our system is a GMM-HMM architecture based on Kaldi 
speech recognition engine (Povey et al., 2011). Acoustic 
models are all fully continuous density context-dependent 
tri-phones with 3 states per HMM trained with Maximum 
Mutual Information Estimation (MMIE). The feature 
vector consists of the standard 39-dimensional MFCC 
coefficients. During acoustic model training, linear dis-
criminant analysis (LDA) and maximum likelihood linear 
transform (MLLT) are applied to reduce dimensionality, 
which improves accuracy as well as recognition speed. 
Feature-space MLLR (fMLLR) was used for Speaker 
Adaptive Training (SAT) of the acoustic models. The 
first decoding pass uses a relatively smaller language 
model of around 800K n-grams. Then in the second pass, 
the generated trigram lattices are rescored against a larger 
trigram model of around 10M n-grams. 

4. Baseline System 

4.1. Acoustic Modeling 

We have adopted Grapheme-based acoustic modeling 
(also known as graphemic modeling). Graphemic model-
ing is an acoustic modeling approach where the phonetic 
transcription is approximated to be the word graphemes 
rather than the exact phoneme sequence. Short vowels 



 

 

and geminations are assumed to be implicitly modeled in 
the acoustic model (Vergyri et al., 2005; Billa et al., 
2002). 

The baseline acoustic model is trained with the QA 
training set. The optimized number of tied-states and 
Gaussians mixture per state are found to be 1000 and 8, 
respectively. Each grapheme letter is mapped to a unique 
model resulting in a total number of 41 base units (36 
letters in the standard Arabic alphabet and 5 Persian let-
ters). 

4.2. Language Modeling 

The language model is a backoff tri-gram model with 
Modified Kneser-Ney smoothing. The baseline language 
model has been trained with the transcriptions of the QA 
training set (65K words). The vocabulary size is about 
15.5K unique words. LM training parameters have been 
optimized to minimize the perplexity of the QA devel-
opment set.  

The evaluation of the language model against the tran-
scriptions of the evaluation set results in an OOV rate of 
22.2% and a perplexity of 315.5 whilst on the develop-
ment set, it results in an OOV rate of 18.4% and a per-
plexity of 399.4 the as shown in Table 4. We could not 
observe any improvement in speech recognition accuracy 
by increasing the order to 4-grams, apparently because of 
the limited amount of QA training text that can result in 
more sparsity in higher order n-grams. 

4.3. Evaluation Settings 

For the QA baseline system, batch decoding resulted in 
WER of 61.7% on the QA development set and 80.8% on 
the evaluation set as shown in Table 3. By examining 
results, we find that about 1.0% of the errors are caused 
by either: the different forms of Alef (e.g. أ instead of ا), 
final Teh Marbuta (ة instead of ه or vice versa), or final 
Alef Maksura (ى instead of ي or vice versa). Since there 
is no standard orthographic form for dialectal Arabic and 
these kinds of errors are already common orthographic 
variants in dialectal Arabic, we decide to ignore these 
types of errors by normalizing both hypothesis and refer-
ence, before alignment, as follows: 
 
 Normalizing all forms of Hamzated Alef (أ إ آ) to ا . 
 Normalizing final Yeh ي to Alef Maksura ى . 
 Normalizing Teh Marbuta ة to Heh ه . 

 
After applying orthographic normalization, absolute 

WER decreases to 60.9% on the dev. set with 1.3% rela-
tive reduction and 79.9% on the eval. set with 1.1% rela-
tive reduction as shown in Table 3. 
 

 dev. eval. 

QA Baseline 
+ Orthographic norm. 

61.7% 
60.9% 

80.8% 
79.9% 

 
Table 3. Word Error Rate (WER) (%) evaluation of the 
QA baseline system with and without orthographic nor-
malization on the development set and the evaluation set. 

5. Cross-Lingual Language Modeling 

In the baseline system, a significant percentage of errors 
is mainly due to the high OOV rate that exceeds 18%. In 
an attempt to improve the LM, we trained a MSA tri-
gram LM using the LDC Gigaword corpus (Parker et at., 
2009) that consists of more than 800M words. The MSA 
vocabulary consists of the top 256K words in the corpus. 
The evaluation of the MSA LM resulted in a perplexity of 
1366.7 and 1199.2 on the dev. and eval. sets respectively 
as shown in Table 4. The OOV rate was found to be 
22.3% and 22.1% on the dev. and eval. sets respectively 
as shown in Table 4. 

In order to decrease OOV, we have linearly interpolated 
both the QA LM and the MSA LM. Interpolation weights 
were optimized on the dev. set. The cross-lingual interpo-
lation resulted in a vocabulary size of 265.7K words. 
OOV rate is significantly decreased to 8.9% and 9.2% on 
the dev. and eval. sets respectively as shown in Table 4. 
Perplexity test resulted in 1147.0 and 1262.7 on the dev. 
and eval. sets respectively. 

Using the cross-lingual MSA/QA LM, batch decoding 
resulted in absolute WER of 56.0% and 64.4% on the 
dev. and eval. sets respectively with significant relative 
reduction of 3.6% and 16.3% compared to the baseline as 
shown in Table 5. 

 

LM Vocab. 
Perp. OOV (%) 

dev. eval. dev. eval. 

QA 15.5K 399.4 315.5 18.4 22.2 
MSA 256K 1366.7 1199.2 22.3 22.1 
QA/MSA 265.7K 1147.0 1262.7 8.9 9.2 

 
Table 4. Language models evaluation with development 

set and evaluation set. 

6. Cross-Lingual Acoustic Modeling 

6.1. MSA Acoustic Model 

In this section, we describe how to use an MSA acoustic 
model to decode QA speech. Initially, that is not possible 
because of the mismatch between the phone sets of MSA 
and QA. This mismatch is solved by applying phone 
mapping. Consonants that do not exist in MSA have been 
mapped to the closest ones in MSA as follows: 
 
 /ɡ/ and /ʒ/ are mapped to  /ʤ/. 
 /ʧ/ is mapped to /t/ followed by /ʃ/. 
 /v/ is mapped to  /f/. 
 /p/ is mapped to  /b/. 

 
After applying QA phone mapping, a MSA graphemic 

acoustic model is trained using the MSA 62.4 hours cor-
pus. Decoding results are an absolute WER of 61.9%  and 
81.3% on the dev. and eval. sets respectively with 1.6% 
and 1.8 relative increase compared to the QA baseline as 
shown in Table 5. This relative increase is expected as the 
MSA acoustic model does not yet cover all QA dialect 
specific features.  



 

 

6.2. Data Pooling 

In data pooling acoustic modeling, we have jointly 
trained the acoustic model using both QA and MSA data. 
Decoding results are an absolute WER of 56.6% and 
64.4% on the dev. and eval. sets respectively outperform-
ing the baseline by a relative decrease of 7.1% and 19.4% 
as shown in Table 5. 

6.3. Acoustic Model Adaptation 

In this section, we apply acoustic model adaptation tech-
niques on the MSA model using QA speech Data. Maxi-
mum Likelihood Linear Regression (MLLR) (Leggetter 
and Woodland, 1995) followed by Maximum A-
Posteriori (MAP) re-estimation (Lee and Gauvain, 1993) 
is applied. Decoding results are an absolute WER of 
57.3% and 65.9% on the dev. and eval. sets respectively 
outperforming the baseline by a relative decrease of 5.9% 
and 17.5% as shown in Table 5. 

6.4. Combined Data Pooling and Acoustic Model 
Adaptation 

Data pooling and acoustic model adaptation have been 
combined in this section. Acoustic model adaptation is 
applied on the MSA/QA pooled model rather than the 
MSA model. Decoding results are an absolute WER of 
55.6% and 62.5% on the dev. and eval. sets respectively 
outperforming the baseline by a significant relative de-
crease of 8.7% and 21.8% as shown in Table 5. 

6.5. System Combination  

In this section, we combine different systems to further 
improve accuracy using Minimum Bayes-Risk (MBR) 
decoding (Goel and Byrne, 2000). MBR is applied on the 
generated lattices from the two systems: 
  

1. QA AM (sys. 1 in Table 5). 
2. QA/MSA pool/adapt AM. (sys. 5 in Table 5). 

 
In both systems, the QA/MSA interpolated LM is used. 

System combination using lattice MBR resulted in an 
absolute WER of 47.9% and 56.8% on the dev. and eval. 
sets respectively outperforming the baseline system by a 
relative decrease of 21.3% and 28.9% as shown in Table 
5. 
 

sys. AM dev. eval. 

1 
2 
3 
4 
5 
6 

QA 
MSA 
QA/MSA pool 
QA/MSA adapt 
QA/MSA pool/adapt 
1+5 MBR 

58.7 
61.9 
56.0 
57.3 
55.6 
47.9 

66.9 
81.3 
64.4 
65.9 
62.5 
56.8 

 
Table 5. WER on QA dev. and eval. sets using QA/MSA 

LM and various acoustic models configurations. 
 
The strategy of data pooling, followed by MLLR+MAP 
adaptation, is equivalent to a type of iterative transfor-
mation and adaptive re-weighting of the QA relative to 

the MSA data.  For example, the mean vector of the 
thk  

Gaussian, computed by the final stage of MAP adapta-
tion, is given by 
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where tx , Tt 1 , is a dialectal feature vector, 

)(kt  is the posterior probability of the 
thk  Gaussian 

given tx ,   is the weight of the prior, k  is the 
thk  

mean prior to adaptation, and kA  is the corresponding 
MLLR transformation.  But notice that, in turn, k  is 
given by 
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where tx , for STtT 1 , is an MSA feature 
vector, and )(kt  is the weighting coefficient computed 
during the last round of maximum-likelihood EM training 
applied to the pooled MSA and QA datasets.  By combin-
ing Eq. (1) and (2), we discover that MAP adaptation is 
similar to an adaptive re-weighting scheme, such that QA 
feature vectors are weighted comparably to MSA feature 
vectors during the initial EM training, then transformed 
by kA , and then re-weighted to an increased final weight 
of )()( kkN ttk   .  The effective weight of each 
MSA datum is similarly decreased, during MAP adapta-
tion, to only )(kt .  The effect of this iterative strategy 
is to give greater weight to MSA data during the initial 
training of the model, when the MSA data may be useful 
to help the learning algorithm avoid spurious local optima 
in the likelihood function; after the model parameters 
have converged to a solution that is optimal for the 
pooled MSA+QA data, then MLLR improves the repre-
sentation of QA data, and, finally, MAP is used to in-
crease the relative importance of QA data in the final 
training criterion. 

7. Discussion 

Even though the differences between MSA and Arabic 
dialects are large, to the extent that we can consider Ara-
bic dialects as totally different languages (Ferguson, 
1959), we can still benefit from MSA speech resources to 
improve dialectal Arabic speech recognition. The perfor-
mance of the data pooling approach may be affected by 
the ratio of dialectal data amount to MSA data amount. In 
our case, the data pooling approach results in an absolute 
WER of 56.0% on dev. set and 64.4% on eval. set. MSA 
data amount is about five times the amount of dialectal 
data. In order to boost the contribution of dialectal data, 
MLLR and MAP adaptations are then applied on the 
pooled acoustic model, effectively increasing the weight 
of dialectal acoustic features in the final cross-lingual 
model. The combination of data pooling followed by 
acoustic model adaptation results in a lower absolute 



 

 

WER of 55.6% on dev. set and 62.5% on eval. set. Lat-
tice MBR decoding contributes in further reduction in 
WER achieving 47.9% on dev. set and 56.8% on eval. 
set. 

8. Conclusions and Future Work 

In this paper, we propose a speech recognition system for 
Qatari Colloquial Arabic (QA). Due to the limitation of 
dialectal resources, by utilizing MSA data, our proposed 
method, cross-dialectal phone mapping, data pooling, 
acoustic model adaptation, and system combination 
methods, has achieved 21.3% and 28.9% relative WER 
reduction on QA development set and evaluation set re-
spectively. 

For future work, it is possible to extend current frame-
work to other dialect speech recognition systems. Moreo-
ver, some future directions are to incorporate recent 
achievements in transfer learning and domain adaptation 
to further improve the system performance (Pan and 
Yang, 2010). In addition, the cross-lingual training and 
adaptation can be bidirectional; a multi-task framework 
of Arabic speech recognition can be formulated so that 
both MSA and dialectal recognition performance can be 
enhanced simultaneously (Caruana, 1997). 
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