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Abstract

This study investigated speaker variation in the production of
various acoustic cues of prominence, including durational and
intensity measures. This study stems from our prior work
where we used the Bayesian Information Criterion to determine
whether each cue were gradiently or discretely associated with
prominence. In our prior work, we found that features vary as
to whether they are gradient or discrete. In the present study,
we found a similar result. For all speakers, some features are
gradient and some features are discrete in the manner in which
they cue prominence. Under a metrical stress notion of hierar-
chically layered prominence, our result would suggest that some
speakers do not exploit the full range of prominence distinctions
offered in English.

Index Terms: speech prosody, prominence, Bayesian Informa-
tion Criterion, speaker variation, corpus linguistics

1. Introduction
Functionally, prominence is used in English to mark the
prosodic structure of a phrase, to distinguish new information
from old information, and to introduce contrast. Phonetically,
studies have shown that prominence can be realized through an
increase in the duration of the stressed vowel, an increase in in-
tensity, and the presence of a pitch accent [1, 2, 3, 4, 5]. Further-
more, there is also evidence that listeners use their expectations
of prominence placement to perceive prominence. [6]

There are several ways that one could represent the phono-
logical notion of prominence. One such representation would
be prominence as a binary feature, where each word is either
prominent or non prominent. Another representation is offered
by Metrical Stress Theory [7]. Under metrical stress theory,
prosodic units are arranged in a strong-weak patterning and
layered on top of each other in intonational phrases, prosodic
words, syllables, feet, and mora. In this manner, prominence
is also hierarchical and can be phonetically realized gradiently.
The results from our previous work, described in detail in the
next section, agree with this representation of prominence as
hierarchical, however, much of the variance between features in
the results remained unaccounted for. One hypothesis, and the
point of departure for this study, is that speakers vary in which
features they used to cue prominence.

In the present study our research questions are as follows.
Across speakers, is there consistent use of correlates of promi-
nence? What phonological model can be used to account for
differences across speakers or features in cuing prominence?

1.1. Past Work

In our past work, we collected prominence judgments from a
35,000 subset of the Ohio State Buckeye Corpus [8] using the
Rapid Prosody Transcription method–a method used for obtain-
ing word-level prominence judgments from naive, native speak-
ers of English [9]. Teams of 15-20 native speakers of English
were used to transcribe short excerpts (15-60s) of the Buckeye
Corpus with a binary prominent or non-prominent label, in real
time. Then, for each word, we took the number of subjects that
labeled the word as prominent and divided it by the number of
labels. We term this value as the p-score. Utilizing this method,
approximately five hours of data was annotated with p-scores.

In a later study, we investigated the relationship between p-
scores and various acoustic measures that have been reported in
the literature to be correlated with prominence and we found a
positive correlation [4]. In other words, as the number of listen-
ers, who thought a word was prominent increased, the acoustic
measures also increased (durational measures became longer,
intensity measures became louder, etc.).

1.2. Bayesian Information Criterion

In a subsequent study, we attempted to further refine our under-
standing of the relation between p-scores and prominence cues
[10]. We investigated whether each cue was better modeled by
a single Gaussian distribution or two Gaussian distributions. To
obtain two distributions from a single cue we divided measures
by their associated p-score, as shown in Figure 3. This process
was done at every p-score interval. The best model between the
single distribution and the many two-distribution models was
obtained by calculating the Bayesian Information Criteria (de-
scribed in detail in Section 2.2.2).

If a cue was best modeled by two distributions, with one
distribution associated with low p-scores and non-prominence
and the other associated with high p-scores and prominence this
would suggest that this cue operated in a binary fashion. In
contrast, a single distribution would suggest a gradient notion
of prominence, which would be consistent with a metrical stress
notion of hierarchically layered prominence. Note that if we
expect that these cues all contribute the same information to the
perception of prominence and that speakers act in a uniform
manner, then we would expect that all features would be best
modeled in the same way (i.e. they would all be best modeled by
a single distribution or all best be modeled by two distributions).
If best modeled by two distributions, would we expect that the
p-score threshold dividing those two distributions would be the
same for each cue.

In that study, we found that some features were best mod-
eled by a single distribution and others were better modeled by



Feature R2 P-Value
Max Intensity of the Stressed Vowel 0.024 0
Min Intensity of the Stressed Vowel 0.024 0

Min Intensity of the Last Vowel 0.039 0
RMS Intensity of the Last Vowel 0.039 0
Max Intensity of the Last Vowel 0.039 0

Stressed Vowel Duration 0.042 0
Duration of the Last Vowel 0.049 0

Log Stressed Vowel Duration 0.057 0
Log Duration of the Last Vowel 0.058 0

Word Duration 0.227 0
Log Word Duration 0.248 0

Table 1: Table showing positive correlation between acoustic
features and p-scores.

two. Furthermore, for those features best modeled by two dis-
tributions, there were very different p-score thresholds between
features. This result suggests that either prominence is a gra-
dient feature or speakers do not utilize the same set of cues, or
possibly a combination of these two. It is this outstanding issue
that the current study investigates by conducting a BIC analysis
on each feature for individual speakers.

2. Methodology and Results
2.1. Features

We began this study by sampling various measures of cues
found to be correlated with prominence from the stressed vowel,
the last vowel, the whole word, and the following word. One
cue that we measured was duration. For calculating the dura-
tion of the last vowel and the whole word, we used timestamps
provided by the phoneme-level transcriptions in the Buckeye
corpus.

As the Buckeye corpus does not contain stress informa-
tion, additional work was needed to extract the duration of
the stressed vowel. Using the International Speech Lexicon
(ISLEX) dictionary, which contains phoneme-level dictionary
pronunciations with stress markings, we were able to estimate
the location of the vowel carrying primary stress and use that
phoneme index within the Buckeye phoneme-level transcrip-
tions to calculate the stressed vowel duration.

After calculating these raw duration measures, we created
a second set of measures by taking the log values of all of the
raw values.

We also calculated the minimum, maximum, and root mean
square intensity. The raw intensity was extracted automatically
using a praat script which sampled the sound files every mil-
lisecond.

Thus, in total we used four durational measures, four log
durational measures, and twelve intensity measures for a total
of twenty features. After these twenty features were extracted
a regression analysis was conducted to confirm that they were
indeed positively correlated with p-scores. Any feature that was
not correlated was discarded, which left eleven features to be
analyzed. Table 1 summarizes the features that were found to
be positively correlated with p-scores.

2.2. Methodology

For each feature we compared models containing different par-
titions of the data produced by individual speakers. Partitions
were made as shown in Figure 3. We first considered the orig-

inal distribution as a distinct model. Then, for sixteen unique
p-scores, a value ranging between 0 and 1, we used each p-
score as a threshold and split the original distribution using it.
All of the feature values associated with a p-score less than or
equal to that threshold were placed in one distribution and all
of the feature values associated with a p-score higher than that
value were placed in another distribution.

This strategy was motivated by the idea that if prominence
is binary, then we might expect to have two populations within
our feature data, where one population is associated with low
p-scores and one population is associated with high p-scores.
Furthermore, assuming the feature is binary, we do not know
where the threshold should be made, thus, we run our analysis
over every unique p-score value.

2.2.1. Fitting Data to a Model

In this study, we investigate whether our data is best modeled
by one Gaussian distribution or two. A Gaussian distribution is
characterized by a mean and a standard deviation. For a given
set of data we can calculate a mean and a standard deviation,
thus “fitting” our data to the Gaussian defined by those param-
eters. It is possible that the data will not all fall within the the
Gaussian distribution. Thus, if we split the data in two, we can
model the data with two Gaussian distributions, providing a bet-
ter fit for the data. This process can be continued until the set
of Gaussian distributions perfectly represents the data. Note
however, that increasing the number of Gaussian distributions
increases the complexity of the model.

To find the best model, we can use a log likelihood estimate
if the number of distributions in our two models is the same.
In this study, however, we compared a model with a single dis-
tribution and several models with two distributions. Thus, we
used the Bayesian Information Criterion (BIC) (eq. 1).

2.2.2. Bayesian Information Criterion

The problem of determining where to segment p-scores is qual-
itatively similar, in some ways, to the problem of segmenting
meeting-room speech into segments corresponding to different
talkers. In both cases, we wish to make as few assumptions
as possible, e.g., we do not want to assume that we know how
many segments there should be. The problem of speaker seg-
mentation is often solved using a Bayesian Information Crite-
rion (BIC) [11]. The BIC measures the mutual information be-
tween the parameters of any given model and the observed data,
under the assumption that the parameters themselves are ran-
dom variables generated by randomly resampling the training
data. The BIC thus takes the form of a penalized log likelihood
function,

BIC(X; Λ) = logF (X; Λ)− (k/2)ln(n) (1)

where Λ is a parameterized distribution model containing k
parameters, and X is a dataset containing n observations. The
likelihood F (X; Λ) is guaranteed to increase when the dataset
is segmented, and separate model parameters are trained using
each half of the data. The entropy penalty (k/2)ln(n) mea-
sures, in effect, the expected increase in the log likelihood. Thus
we can compare two models by computing

∆BIC = BIC(X; Λ1)−BIC(X; Λ2) (2)

If ∆BIC is positive, it means that model Λ1 fits X better
than Λ2 by a greater-than-expected amount; if ∆BIC is nega-
tive, the improvement in fit is less than expected. This is not a



significance test; ∆BIC > 0 does not mean that Λ2 is rejected
with 95% confidence, it only means that Λ1 is better.

Within a given feature, after calculating the BIC score for
each model, we calculated equation 2, where Λ2, the baseline,
was the model with a single Gaussian distribution. From these
∆BIC scores, the highest score indicates that the associated
p-score threshold is the optimal partition point. Note that any
∆BIC score with a value greater than zero suggests that this
feature is better modeled by a two-Gaussian distribution. If
none of the ∆BIC scores is higher than zero, this suggests that
this feature is better modeled by a single Gaussian distribution.

After calculating the optimal BIC partitions, to make pat-
terns more clear, we placed the optimal p-scores into five bins:
0, 0.25, 0.5, 0.75, 1.0 where p-scores were less than or equal
to the bin they were placed in. We then observed the data by
looking at how speakers produce prominence within each fea-
ture (Figure 1). We also inverted the observation and looked at
the feature variation within each speaker (Figure 2).

Figure 1: Histograms of binned p-score thresholds for individ-
ual features (n=27, which corresponds to the number of speak-
ers).

3. Discussion
Considering the data in Figure 1, we see that all features are
best modeled by two distributions with a low p-score threshold,
with the exception of the log duration measures and the word
duration, which are best modeled by a single distribution. Fur-
thermore, we see some variation in p-score threshold in most
features.

Considering the data in Figure 2, we see that, across all
speakers, there are some features that are best modeled by two
distributions with a low p-score threshold. Thus, all speakers
make a binary prominent and non-prominent distinction with a
low p-score threshold. About half of the speakers also make a
binary distinction with a high p-score threshold. At the same
time, everyone also has some features that are best modeled by
a signle distribution. Thus, all speakers also use cues that are
gradiently associated with prominence.

The results presented here do conform with the result found
in our prior study. Some of the variance in our previous study

Figure 2: Histograms of binned p-score thresholds for individ-
ual speakers (n=11, which corresponds to the number of fea-
tures). Speakers are clustered by the group they fall into. 1)
Indicates the speaker was best modeled by just two bins (0.0
and 0.25. 2) Indicates 0.25 was the largest bin. 3) Indicates 0.0
was the largest bin. Entries in 4) did not fall into any category.

may be explained by speaker variation, as speakers do vary to
a degree in how they cue prominence. However, by and large,
within a feature, speakers are mostly consistent as shown in Fig-
ure 1. Thus, different acoustic cues are utilized consistently
across speakers as either binary or gradient.

As with our previous work, we found some features were
best modeled as binary across a low threshold, binary across a
high threshold, and gradient. Our results for individual speakers
confirms that no one uses a uniformly gradient or uniformly bi-
nary strategy in the production of prominence. If we consider a
metrical stress notion of prominence, where prominence is hier-
archically layered, one possible way to account for the plurality
of strategies is to consider that some speakers “flatten” the hi-
erarchy. In other words, they do not fully exploit the possible
range of prosodic levels. If we consider the nuclear stress to be
one extreme on a “prominence continuum” and an unstressed
word that carries given information on the other end, our re-
sults would suggest that not all speakers are utilizing the levels
between these two extremes.

More work is needed to investigate the reality of promi-
nence in the mind of the speaker. The role of the listener as a
source of variance also needs to be investigated.

4. Conclusion
In this study we have attempted to refine our understanding of
variance across speakers in the production of prosodic promi-
nence. Our findings show that while there is some variation in
how speakers cue prominence, these variations are not funda-
mentally different–all speakers cue prominence using features
that are gradiently associated with prominence and features that
are binarily associated with prominence. Our result suggests



that prominence is gradient, but variation in our results suggests
that not all speakers are exploiting all of the possible levels of
the prosodic hierarchy. Further studies will continue to investi-
gate the issue of variation in prominence production.
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Figure 3: Schematic of partitioning features using randomly generated
data. Note that the example data contains data sampled from two dis-
tinct Gaussian populations. Further note that these two distributions
cannot be seen in the 1D histogram. The first step to creating two dis-
tributions for use in the BIC analysis is to pair together feature values
with their associated p-scores. This can be visualized in a 2D histogram.
From here, we choose some p-score threshold (e.g. 0.4). All of the fea-
ture values associated with a p-score less than or equal to that threshold
are isolated in a separate distribution from those feature values associ-
ated with a p-score greater than the threshold.


