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Abstract

In recent years, designing the coding and pooling
structures in layered networks has been shown to be a
useful method for learning high-level feature representa-
tions for visual data. Yet, such learning structures have
not been extensively studied for audio signals. In this pa-
per, we investigate the different pooling strategies based
on the sparse coding scheme and propose a temporal
pyramid pooling method to extract discriminative and
shift-invariant feature representations. We demonstrate
the superiority of our new feature representation over tra-
ditional features on the acoustic event classification task.
Index Terms: sparse coding, pooling, acoustic event
classification

1. Introduction

Non-stationary, harmonic quasi-periodicities, and time-
relative structures provide useful cues for different types
of audio processing applications, e.g., speech recogni-
tion, audio coding, audio localization, footstep track-
ing, and music genre identification [1, 2, 3, 4]. The
importance of these acoustic cues has long been recog-
nized, but reliable and efficient extraction of such infor-
mation is difficult. The difficulty is largely due to the
fact that most signal analysis/representation approaches
are block-based, i.e., the signal is processed in a series
of discrete blocks. Hence, non-stationary periodicities
and transients in the signal can be temporally smeared out
across blocks. Furthermore, block-based representations
are sensitive to temporal shifts, which could create ambi-
guity for representing a signal. In the case of audio and
speech signal recognition, for example, common feature
representations, Perceptual Linear Prediction (PLP) and
Mel-frequency cepstral coefficients (MFCCs) , are ex-
tracted based on temporal shifting blocks. Although stan-
dard windowing techniques can alleviate these effects, it
is desirable to have signal representations which are in-
herently insensitive to signal shifts.

A desirable representation should also capture the un-
derlying time-frequency structures in signals with good
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coding efficiency, so that the structures can be easily ex-
tracted for further processing. To efficiently capture and
represent signal structures, sparse coding methods have
been studied [5, 6, 7]. Sparse coding provides a class of
algorithms for finding succinct representations of stimuli
by assuming a signal can be represented by a small num-
ber of basis functions taken from an overcomplete dictio-
nary. Grosse et al. [5] proposed a shift-invariant sparse
coding model to efficiently encode a time-series input
signal with the basis functions in all possible shifts and
demonstrated its usefulness in audio classification tasks.
Smith and Lewicki proposed a sparse and shift-invariant
signal representation [1], where a signal is encoded with
a set of time-shiftable gammatone kernel functions, ap-
proximating the cochlear filters, with associated magni-
tudes and temporal positions. The representation is called
spikegram because the nonzero entries in the sparse basis
expansion can be interpreted as neural spikes: action po-
tentials on the auditory nerve. This spikegram can encode
the audio signal sparsely and efficiently in both frequency
and time.

In image analysis, effective feature learning struc-
tures have been proposed, which contain two basic lay-
ers: a “coding” layer for efficiently encoding the signals,
and a “pooling” layer to extract compact and translation-
invariant representations from the coding responses for
discriminant analysis or further processing. Some re-
cent works based on pooling over sparse codes have led
to state-of-the-art performance on several visual recogni-
tion benchmark datasets [8, 6, 7]. Among different spa-
tial pooling methods,max pooling [6] has shown great
potential for many existing coding schemes. However,
the problem of effectively extracting discriminant infor-
mation from sparse representations has not been exten-
sively studied for audio signals. For audio signals, both
biological and psychoacoustic evidence suggest that hu-
mans have an intensity pooling mechanism within criti-
cal bands, and loudness pooling (cube root of intensity)
across bands (e.g., [9]). In this paper, we investigate dif-
ferent pooling strategies for sparse coding schemes and
propose a temporal pyramid pooling method for extract-
ing discriminative shift-invariant representations.

The organization of this paper is as follows. Section
2 introduces the feature extraction scheme for audio sig-



nals. Section 3 presents the experiments and results. Fi-
nally, section 4 concludes the paper with discussions on
future works.

2. Sparse Time-Relative Coding
In this section, we introduce the model we use for
sparsely encoding the audio signals, which was originally
proposed by Smith and Lewicki [1, 10] and Manzagol
et al. [2].

2.1. Model for Signal Representation

Smith and Lewicki proposed an efficient time-relative
coding structure using spikes for audio signals [1, 10]. In
this model, a signalx(t) is represented by a set of gam-
matone kernel functions,φ1, · · · , φM , which can be po-
sitioned independently and arbitrarily along the time axis.
The model can be expressed in a convolutional form:

x(t) =
M∑

m=1

nm∑

i=1

xm

i
φm(t− τm

i
) + ǫ(t), (1)

wherexm
i

andτm
i

are the coefficient of theith instance of
themth gammatone kernelφm and its temporal position,
respectively. The notationnm indicates the number of
instances forφm, which does not have to be the same for
different kernels. Moreover, the kernels are not restricted
in length or form. Here,ǫ(t) represents the additive noise.

Motivated by both natural sound statistics and biol-
ogy studies [1], the gammatone filters are given by

φm(t) = t(l−1)e−2πbt cos(2πfmt), t > 0, (2)

wherel is the filter order,t is time,b is the filter’s band-
width, andfm is the center frequency of the filter and is
distributed on equivalent rectangular band (ERB) scales
between65 Hz and14k Hz.The gammatone functions
are known to approximate the cochlear filters and can be
modeled with Slaney’s auditory toolbox [11]. The num-
ber of gammatone kernels determines the spectral and
temporal representation precision. In this paper, we use
64 normalized gammatone kernels (l = 4 in Eq. (2))
with frequencies ranging from 20 Hz to the Nyquist fre-
quency, suggested by previous works [1, 2] to achieve a
trade-off between representation precision and computa-
tional complexity.

2.2. Encoding Algorithm

To encode a signal with the 64 gammatone kernels,
matching pursuit is employed to achieve a tradeoff be-
tween reconstruction error and computational complex-
ity [1]. The algorithm iteratively approximates an input
signalx with successive orthogonal projections onto the
chosen basis functions [12], so thatx is a linear combi-
nation of few elementary “atoms” from the set of gam-
matone kernelsD = {φm}. It works iteratively as fol-

lows: First, the signal is cross-correlated with all the ba-
sis atoms. Second, the best fitting projection is selected
and its corresponding atom, scaling, and placement are
stored. Finally, the projection is subtracted from the sig-
nal and the procedure continues over the residual.

After encoding with matching pursuit, the signal is
decomposed into a set of sparse spike codes, called a
spikegram. The spike pattern usually represents the firing
of the action potentials at auditory nerves. One important
characteristic of the coding is that kernels are placed at
time locations precisely. This characteristic allows pre-
cise localization of signals, for example, onset of a music
signal [2]. Another property is that spikes are used on a
per-need basis. The spikegram is adaptive in the number
of spikes for a given encoding ratio. This characteristic
contrasts with the uniform distribution of encoding re-
sources in the spectrogram. Figure 1 shows an example
of the representation comparison between a spectrogram
and a spikegram for a segment of door slamming sound.
As shown, spikegram is much sparser than the traditional
spectrogram. Suggested in many previous works, repre-
senting the signal in the most parsimonious form is ad-
vantageous for discriminant analysis, which is also veri-
fied in this work.

2.3. Temporal Pyramid Pooling

Acoustic signals represent a temporal phenomena, for
which capturing the time varying characteristics is impor-
tant for recognition. Similar to the translation-invariant
spatial pooling for visual data, temporal pooling over
audio signals can achieve shift-invariant representations.
Let X andY denote the spikegrams of two acoustic sig-
nals. In analogy to the spatial pyramid matching work
[8], we can construct a temporal pyramid by dividing the
spikegram according to a sequence of regular grids at res-
olution 0, ..., L, such that the grid at levelℓ has2ℓ regu-
lar cells along the temporal dimension of the spikegram.
DenoteXℓ

n
= {xm

i
: bℓ

n
≤ τm

i
≤ eℓ

n
}, wherexm

i
is as

defined in Eq. (1),bℓn andeℓn are the start and end times
of thenth cell on levelℓ. Y ℓ

n andym
i

are defined simi-
larly for signalY . Then we can define an additive kernel
between the two sub-spikegrams given a chosen pooling
functionf :

I(Xℓ

n, Y
ℓ

n) =

M∑

m=1

I(f(Xℓ

n(m)), f(Y ℓ

n (m))), (3)

whereXℓ
n
(m) denotes the set of responses of themth

gammatone filter in the sub-spikegram ofXℓ
n
, I is

the additive kernel (e.g., intersection kernelI(x, y) =
min(x, y)), and the pooling function computes a statisti-
cal number from the set of responsesXℓ

n(m). Different
pooling functions can be defined, e.g., average pooling
computes the average response ofXℓ

n
(m). Putting all

pieces together, we get the following pyramid temporal



(a) Signal and Residual (b) Spectrogram (c) Spikegram (d) Sparsity

Figure 1: An example of a door slamming event representation: (a) signal and matching pursuit residual in the time
domain, (b) spectrogram in the time-frequency domain, (c) spikegram in the time-frequency domain, and (d) average ratio
of non-zero coefficients at each gammatone kernel for different SNR cases.

pooling kernel:

κ(X,Y ) =

L∑

ℓ=0

2ℓ∑

n=1

wℓnI(X
ℓ

n
, Y ℓ

n
), (4)

where the set of weights{wℓn} balance the contribu-
tions of different sub-spikegrams. For simplicity, we set
equal weights for all subsequent experiments. As the fea-
ture pooling is performed in multiple temporal scales,
the defined kernel can achieve different levels of shift-
invariance. Compared with the deep belief networks [13],
our feature learning only consists of one coding layer and
one to two pooling layers. While extending the current
framework into multiple layers or a deep learning struc-
ture is plausible in the future, we mainly investigate the
pooling properties over the spikegram in this paper.

3. Experiments
3.1. Dataset and Setup

To evaluate the performance of the proposed pyramid
temporal pooling kernel over the sparse spikegram, es-
pecially for non-stationary and transient natural signals,
we work on the acoustic event dataset collected by Uni-
versitat Politecnica de Catalunya [14]. The database con-
tains recordings of eleven target acoustic events (AEs)
in a meeting room environment with six T-shaped 4-
microphone clusters (Fs=44,100 Hz). The eleven acous-
tic events recorded include: Knock door/table, Door
slam, Steps, Chair moving, Spoon/cup jingle, Paper
work–listing and warping, Key jingle, Keyboard typing,
Phone ringing/Music, Applause, and Cough. There are
approximately 90 instances per event class for the whole
dataset, which is divided into six sessions (S01-S06).
We use S01-S04 for training and testing, and S05 and
S06 as the development set. Among sessions S01-S04,
we choose three for training and one for testing each
time. All reported results are averaged using this four-
fold cross validation.

To make the task more realistic, we add different lev-
els of Gaussian white noise to the recorded clean au-
dio. For baseline comparison, we compare our pooling

techniques with traditional Perceptual Linear Prediction
(PLP) features, which are extracted from 30 ms Ham-
ming windows with a temporal step of 20 ms. Support
vector machines with the intersection kernel [8] is used
as the classifier for our feature representations.

3.2. Evaluated Pooling Methods

In order to test the pooling methods, we design and
evaluate different pooling strategies for the spikegram
coefficients. Besides the well-known pooling methods,
including max pooling, average pooling, energy pool-
ing, andmagnitude pooling, we also introduce two more
pooling methods inspired by the Mel-frequency cep-
stral coefficients (MFCC) feature and the Perceptual Lin-
ear Prediction (PLP) feature that are commonly used in
speech/music recognition.

In MFCC, after the Mel-frequency filter bank, the ac-
tion of taking log of the power at each Mel frequency is
similar to alog pooling for each gammatone kernel. On
the other hand, in the PLP feature, the action of taking
intensity-loudness power law compression is similar to
a cuberoot pooling for gammatone kernel responses. In
Table 1, we list all the individual pooling methods we
tested. Note thatlog pooling, energy pooling, magnitude
pooling, andcuberoot pooling are equivalent in terms of
the sufficient statistics, but they perform differently fora
specifically chosen classifier. Manzagol et al. proposed
the average-pooling-like feature from the spikegram [2],
which achieves the same accuracy as Mel-frequency cep-
stral coefficients (MFCC) for the music genre recogni-
tion task. In our experiments, we use their algorithm as a
baseline for comparing different pooling methods.

3.3. Experimental Results

Table 2 shows the performance comparisons for different
pooling methods on the acoustic dataset [14] with SVM,
compared with the traditional PLP feature (without pool-
ing) with Hidden Markov Model [15], and segmental PLP
feature [16] (without pooling) and average pooling meth-
ods [2] with intersection kernel SVM. In each cell of the
pooling results, the upper and lower row show the result



Table 2: Classification accuracy with different features under different SNRs. The PLP†, PLP‡, and average§ correspond
to the features in [15], [16] and [2] respectively. In each cell of the pooling results with SVM, the upper and lower row
correspond to one (L = 0) and two (L = 1) layers of temporal pyramid pooling from kernel SVM, respectively.

classifier HMM SVM
features PLP† PLP‡ average§ magnitude energy cuberoot log max

10dB 28.05±4.40 33.86±4.09 38.64±1.90
42.51±2.34 39.15±2.16 43.40± 2.67 41.35±2.05 32.20±4.55
42.90±2.03 38.30±2.60 39.67±2.12 37.06±1.45 33.67±3.62

20dB 51.54±5.21 55.82±4.36 54.47±4.75
67.93± 5.57 66.63± 4.23 67.55±4.96 64.16±2.64 54.30±6.11

67.25±5.19 64.53±3.84 66.31±5.85 61.38±2.93 57.30±5.50

30dB 77.45±6.96 73.30±4.42 79.04±3.87
83.99±3.23 83.01±3.45 84.10±2.60 77.82±3.69 77.50±3.55

85.08± 3.03 82.57±3.24 84.21±3.63 77.09±3.19 80.49±3.98

Table 1: Feature pooling methods for the spikegram.xm
i

is theith response coefficient for themth gammatone ker-
nel in Equation (1).

Pooling Method Equation

average f(Xl

n(m)) =
∑

i
|xm

i |

max f(Xl

n(m)) = maxi(|x
m

i |)

log f(Xl

n(m)) = log(
∑

i
|xm

i |2)

energy f(Xl

n(m)) =
∑

i
|xm

i |2

magnitude f(Xl

n(m)) =
√

∑

i
|xm

i
|2

cuberoot f(Xl

n(m)) = (
∑

i
|xm

i |2)0.33

with one (L = 0) and two (L = 1) layers of pyramid
pooling with kernel SVM (intersection kernel), respec-
tively. From the results, we have several interesting ob-
servations:

1. Althoughmagnitude pooling, log pooling, energy
pooling, andcuberoot pooling are scalar transfor-
mations of energy pooling, they perform differ-
ently due to the limited discriminant power of the
chosen classifier. They all perform better thanav-
erage pooling.

2. Max pooling does not work well compared with
other methods, although it performs well with vi-
sual sparse codes [6].

3. The pooling methods outperform the PLP feature
uniformly under all SNRs by a remarkable margin
(8% to 12% absolute error reduction and 14% to
34% relative), indicating that our pooling feature
representation is discriminative and robust to noise.

4. Non-linear amplitude compression, i.e.,magnitude
pooling, cuberoot pooling andlog pooling achieve
better performance thanenergy pooling. The re-
sults match the findings of non-linear relationship
between the intensity of sound and its perceived
loudness in psychoacoustic studies [9].

4. Conclusion
In this paper, we proposed different pooling schemes over
sparse spikegram coefficients of acoustic signals to ex-
tract discriminative and shift-invariant feature representa-
tions. Compared with PLP, the new pooled shift-invariant
feature achieves error rate reduction of 8% to 12% abso-
lute (14% to 34% relative) on the acoustic event classi-
fication task across a range of SNRs. Although we only

perform our experiments on one real-world acoustic event
dataset, we hope our analysis and observations will in-
spire more research on designing efficient and effective
coding and pooling structures that can be extended to
multiple layers in the deep learning framework both for
audio and visual signals.
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