
ABSTRACT

Audio-visual event detection aims to identify semantically de�ned events that

reveal human activities. Most previous literature focused on restricted high-

light events, and depended on highly ad-hoc detectors for these events. This

research emphasizes generalizable robust modeling of single-microphone audio

cues and/or single-camera visual cues for the detection of real-world events, re-

quiring no expensive annotation other than the known timestamps of the training

events.

To model the audio cues for event detection, we leverage statistical models

proven effective in speech recognition. First, a tandem connectionist-HMM

approach combines the sequence modeling capabilities of the hidden Markov

model (HMM) with the context-dependent discriminative capabilities of an arti-

�cial neural network. Second, an SVM-GMM-supervector appr oach uses noise-

robust kernels to approximate the KL divergence between feature distributions

in different audio segments. The proposed methods outperform our top-ranked

HMM-based acoustic event detection system in the CLEAR 2007 Evaluation,

which detects twelve general meeting room events such as keyboard typing,

cough and chair moving.

To model the visual cues, we propose the Gaussianized vector representa-

tion, constructed by adapting a set of Gaussian mixtures according to the set

of patch-based descriptors in an image or video clip, regularized by the global

Gaussian mixture model. The innovative visual modeling approach establishes

unsupervised correspondence between local descriptors in different images or

video clips, and achieves outstanding performance in a video event categoriza-
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tion task on ten LSCOM-de�ned events in the Trecvid broadcast news data, such

as exiting car, running and people marching. Following an ef�cient branch-and-

bound search scheme, we further propose an object localization approach for the

Gaussianized vector representation.

We jointly model audio and visual cues for improved event detection using

multi-stream HMMs and coupled HMMs (CHMM). Spatial pyramid histograms

based on the optical �ow are proposed as a generalizable visu al representation

that does not require training on labeled video data. In a multimedia meeting

room non-speech event detection task, the proposed methods outperform pre-

viously reported systems leveraging ad-hoc visual object detectors and sound

localization information obtained from multiple microphones.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Audio and visual information is of signi�cant importance to human perception

as well as machine intelligence. Detecting real world events based on such in-

formation �nds various applications, including security s urveillance [1], human

computer interaction, video annotation and multimedia retrieval [2]. In aging so-

cieties, assistance to dependent people, particularly elderly people, staying in an

unsupervised environment also requires such capability [3]. Varying situations

determine the availability of information in either or both of the two modali-

ties. While other sensory data has also been studied, this dissertation focuses on

modeling audio and visual cues for real-world event detection.

Real-word events present a signi�cant challenge for machine intelligence.

Even with prede�ned categories, the cues can be subtle. More over, it is not

always possible to pinpoint clear indicators for different event categories. For

example, a video clip of a �car exiting� event might not have a complete pro�le

view of the vehicle. A �keyboard typing� event might have low -energy audio

footprint and barely visible visual cues from a bird-eye camera.

We study real-world event detection through a set of related problems. First,

short-term acoustic event detection aims to reveal the time and category of event

occurences in a relatively long audio stream. Second, video event detection

provides the event category for video shots, whose boundaries can be obtained

by a well-studied task called shot boundary detection. Third, audio-visual event

detection performs the same task as acoustic event detection, but with access to
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observations in both modalities.

1.2 Background

1.2.1 Acoustic event classi�cation and detection

There is growing research interest in audio/acoustic event detection (AED). Al-

though speech is the most informative auditory information source, other kinds

of sounds may also carry useful information, such as in surveillance systems

[4]. In a meeting room environment, a rich variety of acoustic events, either

produced by the human body or by objects handled by humans, re�ect various

human activities. Detection or classi�cation of acoustic e vents may help to de-

tect and describe the human and social activity in the meeting room. Examples

include clapping or laughter inside a speech discourse, a strong yawn in the mid-

dle of a lecture, a chair moving or door noise when the meeting has just started

[5]. Detection of the nonspeech sounds also helps improve speech recognition

performance [6, 7].

Much research in audio content analysis has typically addressed the problem

of segregating a few audio sources [8, 9] or segmenting an audio stream into a

small number of acoustically compact categories or scenes [10, 11]. Acoustic

event detection (AED), a subtask of audio content analysis, aims to detect spec-

i�ed acoustic events such as gunshots [4], explosions [12, 1 3], speech/music

transitions [10], cough events [14], and audience cheering at a sports event

[15]. Such information is very helpful in applications such as surveillance, mul-

timedia information retrieval and intelligent conference rooms.

Acoustic events sometimes intervene between speech or overlap with back-

ground speech. Without explicit processing of such phenomena, it is possible to

implicitly deal with background speech as noise included in the event observa-

tions [16]. Assuming limited overlapping, we can perform voice activity detec-

tion �rst and then identify acoustic events in the non-speec h segments. Acoustic
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event detection could also be performed tightly coupled with the decoding pro-

cess of speech recognition. For example, the non-speech events can be included

in the language model used in Viterbi decoding, similar to the way silence and

noise are modeled in large vocabulary speech recognition. Another possibility

is to treat the acoustic event sequence (padded with silence and background)

and speech as two separate processes which are decoded simultaneously: the

observed audio waveform is the summation of the two processes. Though this

approach has not been studied for this particular problem, it is successfully used

in multi-talker speech recognition where speech from mutliple speakers overlaps

in time [17].

1.2.2 Video event detection and object localization

Video based event recognition is an extremely challenging task due to all kinds

of within-event variations, such as unconstrained motions, cluttered backgrounds,

object occlusions, environmental illuminations and geometric deformations of

objects. While there exists work attempting to detect unusual or abnormal events

[18, 19] in video clips, the research on event recognition in the real world is still

in its preliminary stage.

Many statistical models, e.g., hidden Markov model (HMM) [20], and cou-

pled HMM [21] were proposed to capture the spatial and temporal correlations

of video events, and then the learned models are utilized for pre-de�ned video

event classi�cation or abnormal event detection. On the oth er hand, appearance-

based techniques were also widely used for video event detection and classi�-

cation. Ke et al. [22] applied the boosting procedure for choosing the volumet-

ric features based on optical �ow representations. Niebles et al. [23] adopted

the spatio-temporal interest points [24] to extract the features, and other works

[24] extracted volumetric features from salient regions. There also exist works

that used bag-of-words model to tackle the problem of object/event recognition

[25, 26]. In addition, Bagdanov et al. [27] adopted bag-of-SIFTs to detect and
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recognize object appearances in videos. Xu and Chang [28] proposed to encode

a video clip as a bag of orderless descriptors obtained from mid-level semantic

concept classi�ers extracted from all of the constituent fr ames, along with the

global features extracted within each video frame.

One problem related to video event detection is video shot boundary detection.

A video shot is a fundamental unit for structured video. Video shot boundary

detection is a non-trivial task, particularly given that the boundaries could be

either gradual or clear cut. The task has been extensively studied in Trecvid

2001-2007, as detailed in [29]. Many video event detection works, including the

experiments performed in this dissertation, start with given shot boundaries.

The object localization task involves �nding the bounding b oxes of an object

within an image, thereby leveraging spatially localized visual cues in an image.

Different from the image categorization problem that aims to assign one label for

the image, object localization needs to evaluate many possible bounding boxes

and identify one or several of them that contain the target objects. A natural

way to carry out localization is the sliding window approach [30]. However, an

exhaustive search in an n�n image needs to evaluate O(n4) candidate bounding

boxes. Heuristics about possible bounding box locations, widths and heights,

or local optimization methods are often used to reduce the search space. The

bounding box search speed can be further improved by coarse-to-�ne search

schemes.

1.2.3 Audio-visual fusion

It has been shown that in many applications with both audio and visual infor-

mation, modeling of the two modalities improves performance compared with

either modality. Chu and Huang [31] and Hasegawa-Johnson et al. [32] both

used the coupled hidden Markov model for audio-visual speech recognition.

Hasegawa-Johnson et al. [32] also explored using a more general dynamic

Bayesian network to better model the coupling between audio and vision, based
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on articulatory phonology. Sadlier and O’Connor [33] studied detection of �eld

sports scoring events, using a support vector machine with various audio-visual

features informative across various sports types. Canton-Ferrer et al. [34] and

Butko et al. [35] both performed audio-visual event detection using not only

audio information, but also output from well trained specialized visual object

trackers, and fused the two modalities at score level and at feature level respec-

tively.

One way to classify audio-visual integration strategies [36] views them as

three categories. The �rst is early integration, which extr acts feature vectors

from both audio and visual observations and concatenates them into one feature

vector sequence for use in one model with the same structure as for one modal-

ity. The second is late integration, which extracts feature vector sets separately

and uses two sets of models generating reliability weights to be combined across

modalities. This is also referred to as decision fusion or separate identi�cation.

The third is intermediate integration, e.g., product hidden Markov model or cou-

pled hidden Markov model.

Besides audio-visual integration, the availability of audio-visual data also en-

ables multi-view learning, which leverages the relation between the different

modalities to improve the learning. Canonical correlation analysis (CCA) is

an unsupervised feature transform learning method that �nd s a subspace where

the audio and visual cues achieve maximum correlation. One modality can be

viewed as �soft labels� for the other, when �nding the optima l projection onto

the CCA subspace. This has been shown to improve speaker recognition and

clustering, even when the visual cues are not available at testing, in [37] and

[38] respectively. When both audio and visual cues are available at testing, we

can apply CCA for both modalities to obtain two versions of the projected fea-

ture vectors. It is pointed out by [39] that these projected vectors can be further

decomposed into uncorrelated elements, so that an early integration strategy can

be applied to correlated corresponding audio-visual elements and a late integra-

tion strategy to the uncorrelated elements.
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1.2.4 Audio-visual pattern recognition in general and realistic
data

Real-word audio and visual data present much more variation than restricted lab

data. Many times, even for the same task, approaches that work on restricted

lab data are not necessarily suitable for realistic data. One example is from the

acoustic event detection literature. While most of the work in event detection fo-

cuses on a few highlight events, the 2006 and 2007 AED Evaluations sponsored

by the project �Classi�cation of Events, Activities and Relat ionships (CLEAR)�

[5, 1] were mainly performed on a continuous audio database recorded in real

seminars [40]. Systems attempted to identify both the temporal boundaries and

labels of twelve acoustic events (door slam, paper wrapping, foot steps, knock-

ing, chair moving, phone ringing, spooncup jingle, key jingle, keyboard typing,

applause, cough, and laughter). Instead of being exclusively highlight events,

many of the events in CLEAR evaluations were either subtle (low SNR, e.g.

steps, paper wrapping, keyboard typing), or/and overlapping with speech, mak-

ing the task particularly challenging. The real environment factor added to the

variation of the events as well as the dif�culty of segmentin g the audio-visual

input stream. In the 2006 CLEAR AED Evaluation, the participants delivered

superb performance on acoustic event detection on clean audio with performed

events, while the same teams struggled with realistic seminar data [41].

In 2007 CLEAR AED Evaluation, with only audio information available to

the systems, although different system architectures and feature sets have been

explored [5, 1], even the top rated AED system, which was developed by the

author of this dissertation together with other members of our UIUC team, left

much space for improvement [42]. The evaluations highlighted the challenges in

the detection of a large set of general acoustic events in a real world environment.

With the signi�cant challenge from audio-only event detect ion, the research

community has explored leveraging additional visual information to improve

AED performance [43, 12, 44]. Leveraging additional visual cues for audio
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signal analysis has also been explored for other applications, such as speech

recognition [45] and person identi�cation [46]. In particu lar, the multi-stream

HMM and the couple HMM (CHMM) are two effective models for audio-visual

fusion.

Video event detection presents a major challenge, when the concerned data is

from real broadcast news video. Video event detection in this genre differs from

previous studies of more constrained video in various ways. First, the camera

is often in motion, introducing blur and movement of the views. Second, the

same event category may present itself in dramatically different visual content

or layout. Third, it is hard to pinpoint particular problem-speci�c audio-visual

characteristics in order to identify different categories. One way to deal with

the realistic video data is to leverage lower-level semantic concepts, with the

assumption that such concepts well summarize the visual cues and enable con-

venient comparison between different video clips [47].

1.3 Contributions

This dissertation tackles the problem of identifying both timestamps and types

of real world events, providing a comprehensive description of the real world

audio and/or visual stream. Moreover, this research emphasizes robust and gen-

eralizable modeling of audio cues and video cues, either separately or jointly,

with no use of highly ad-hoc detectors trained using separate labeled data. The

proposed framework for audio-visual event detection takes advantage of known

timestamps of the training events and requires no expensive location annotation

of the visual cues.

Statistical models proven effective in the speech recognition literature are used

for audio cue modeling. First, a tandem connectionist-HMM approach combines

the sequence modeling capabilities of the HMM with the high-accuracy context-

dependent discriminative capabilities of an arti�cial neu ral network trained us-
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ing the minimum cross entropy criterion. Second, an SVM-GMM-supervector

approach uses noise-adaptive kernels approximating the KL divergence between

feature distributions in different audio segments. These methods show that a bet-

ter temporal context modeling improves AED based on HMMs, and modeling

the audio segment via one distribution for all frame-based vectors provides use-

ful complimentary information for the task.

In this dissertation, visual cue modeling uses an innovative Gaussianized vec-

tor representation for images and video clips, applied in object categorization

and localization algorithms. The Gaussianized vector representation summa-

rizes an image or a video clip with the distribution of patch-based descriptors,

approximated by a Gaussian mixture model. This representation establishes un-

supervised correspondence between different images through the set of Gaussian

components adapted from a global set of Gaussian components according to the

maximum a posteriori (MAP) criterion. A linear kernel based on this represen-

tation approximates the KL divergence between patch descriptor distributions

from different images or video clips, and can be used not only for categorization

but also for localization in an ef�cient branch-and-bound s earch scheme. These

methods show that it is possible to effectively model real world image and video

data without developing supervised lower level semantic concept detectors, and

achieve state-of-the-art performances for broadcast news video event detection.

I also study improving the detection and classi�cation of th e events using cues

from both audio and visual modalities requiring only labels available for audio

training. Optical �ow based spatial pyramid histograms are used as a general-

izable visual representation that does not require training on labeled video data.

Multi-stream HMMs or coupled HMMs (CHMM) are used for audio-visual joint

modeling. To allow the �exibility of audio-visual state asy nchrony, I explore ef-

fective CHMM training via HMM state-space mapping, parameter tying and

different initialization schemes. The proposed methods successfully improve

acoustic event classi�cation and detection on a multimedia meeting room dataset

containing eleven types of general non-speech events without using extra data
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resource other than the video stream accompanying the audio observations. The

audio-visual event classi�cation and detection system out performs a previously

reported system engaging multiple supervisedly-trained visual object detectors

and location estimators based on microphone array signal processing.

The rest of this dissertation is organized as follows. Chapter 2 presents the

work in acoustic event detection, which has been published in [48, 49]. Chap-

ter 3 details the Gaussianized vector representation and its applications in video

event detection and visual object localization, most of which have been pub-

lished in [50, 51]. Chapter 4 presents the work on improving acoustic event

detection using general visual cues, to be published in [52]. The dissertation

concludes with discussion and conclusion in Chapter 5.
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CHAPTER 2

AUDIO MODELING FOR ACOUSTIC
EVENT DETECTION

Acoustic event detection (AED) in realistic data differs from classi�cation of

isolated events in a silent environment, calling for different statistical models.

While SVMs were shown to be optimal for the latter [53], the former saw most

leading CLEAR AED Evaluation participants using dynamic Bayesian networks

[5, 1]. In particular, our top-rated AED system in CLEAR Evaluation 2007 used

a set of left-to-right hidden Markov models (HMMs), each for one event. HMMs

owe their success to the Viterbi algorithm [54], which allows them to com-

pute simultaneously optimal segmentation and classi�cati on of the audio stream.

Noise in individual frames is alleviated by the HMM’s learned hysteresis, i.e.,

its typical learned preference for self-transitions rather than non-self-transitions

in the hidden �nite state machine.

To take advantage of this proven approach, we leverage a framework in which

HMMs are used to achieve audio segmentation and event classi�cation simulta-

neously. To alleviate HMM’s problem that each hidden state models only local

observations, we propose to use the tandem connectionist-HMM approach [55],

where an arti�cial neural network (ANN) outputs posterior p robabilities of event

types based on very-long-duration, temporally overlapping observation vectors,

leading to better contextual modeling and event discrimination. To further re�ne

the event detection result, we propose using Gaussian mixture model (GMM)

supervectors [56] to abstract the noisy features in the training audio segments

and the hypothesized segments obtained by the tandem model. An SVM with

kernels built on these GMM supervectors, namely the SVM-GMM-supervector

classi�er, is used to replace the labels proposed by the �rst -pass tandem model,
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when such replacement is desirable according to held-out development data.

We perform acoustic event detection experiments on the same setup as the

AED evaluation in CLEAR 2007. It is demonstrated that the tandem connectionist-

HMM approach and the SVM-GMM-supervector approach for re�n ing the re-

sult both contribute to performance improvement, and the proposed system sig-

ni�cantly outperforms our submission system in the CLEAR 200 7 AED Eval-

uation, which was the best ranked in the challenging AED task, outperforming

other participating systems by 50% relative in detection accuracy. We also show

that the acoustic event detection methods, in particular the HMM-based AED

system and the complimentary SVM-GMM supervector rescoring can be effec-

tively applied in a human falling detection system using a single microphone as

the sensor.

2.1 Segmentation and Classi�cation: HMM-Based
System

Audio event detection requires both segmentation of the audio stream, and clas-

si�cation of the segments. Following our experience in the A ED task of CLEAR

2007, we perform simultaneous segmentation and classi�cat ion using a Bayesian

inference procedure similar to state-of-the-art methods for continuous speech

recognition [57, 58].

We formulate the goal of acoustic event detection as follows: to �nd the event

sequence that maximizes the posterior probability of the event sequence W =

(w1; w2; :::; wM ), given the observations O = (o1; o2; :::; oT ):

Ŵ = arg max
W

P (W jO) = arg max
W

P (OjW )P (W ) (2.1)

The acoustic model P (OjW ) is one HMM for each acoustic event, with three

emitting states connected using left-to-right and self-loop transitions. For back-

ground silence and speech, we use a HMM with additional transitions between
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the �rst and third emitting states, to account for the increa sed internal complex-

ity. The structure of the HMMs can model some of the non-stationarity of acous-

tic events. The observation distributions of the states are incrementally-trained

Gaussian mixtures. The HMM for an acoustic event is trained to represent all

training data segments carrying the same event label.

In order to capture short-term soft constraints on the sequence of event la-

bels, the probability of an event label sequence (w1; : : : ; wm) is represented by

a bigram language model:

P (w1w2 � � � wm) = P (w1)
m
Y

i=2

P (wijwi�1): (2.2)

A bigram �language model� in AED favors recognized acoustic event se-

quences with sequence statistics similar to those in the training data. Although

the language model here does not have the same linguistic implications as in

speech recognition, it does improve performance. One of the possible reasons

is that it suppresses long sequences of identical event labels, thus forcing the

HMMs to better learn the internal temporal structure of the acoustic events.

2.2 Acoustic Context: Tandem Connectionist-HMM
Approach

The tandem connectionist-HMM approach is composed of two major compo-

nents, as shown in Figure 2.1: an arti�cial neural network (A NN) that observes

feature vectors in a context window and outputs posteriors of different acoustic

event types, and an HMM component that uses a transformed and normalized

version of the output of the ANN, optionally together with the original features,

as input features. This approach has been shown to improve HMM-based au-

tomatic speech recognition [55]. We use the same framework to boost perfor-

mance of acoustic event detection by drawing evidence from a wider time con-

text window and emphasizing the difference between confusable feature vectors

12



across acoustic events by discriminative training.

Two lessons from its application in speech recognition are particularly relevent

for using the approach in AED. First, the ANN improves recognition perfor-

mance in high noise conditions [59, 60]. The AED task is characterized by low

SNR, in particular with backgrounds that have high variation. Second, the ANN

bene�ts speech recognition when context independent model s are used [60]. To

limit the complexity of the ANN, it is used to distinguish only between different

context-independent models. As pointed out by [60], if the generative (HMM)

part of the tandem system leverages context-dependent models, the ANN may

end up counterproductive by increasing overlap and confusion between differ-

ent context-dependent models that correspond to the same context-independent

model. Consistent with the above �ndings, we have used the tan dem architec-

ture successfully for speech recognition from tract variables in an architecture

based on articulatory phonology [61, 62]. In this work, we use the HMMs to

model different acoustic events that are indeed context-independent.

Consecutive frames within the context window are concatenated to form the

input X to the ANN, each dimension corresponding to one input node. The

number of output nodes equals the number of acoustic event types. The ANN

is discriminatively trained, by back-propagating a minimum cross entropy crite-

rion, to targets that set the output node corresponding to the ground truth event as

one and all other output nodes as zero. During testing, for each context window,

the ANN presents estimated posterior probabilities across all acoustic events.

All context windows centered at every consecutive feature frame are evaluated

in the same way, resulting in a sequence of posterior probability vectors.

With these posterior probabilities, we could perform classi�cation using two

different approaches. The �rst approach just directly uses the ANN output: ei-

ther to assign to each frame its maximum a posteriori event label, or to generate

probabilities that will be smoothed by a Viterbi decoder. However, experiments

in automatic speech recognition suggest that better results may be obtained by

transforming the posteriors into a pseudo-observation, which is then used as the
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input to a Gaussian mixture HMM.

In order for ANN posterior probability vectors to be better modeled by the

Gaussian mixture likelihood model of an HMM, three transformation are ap-

plied as suggested by previous work in tandem speech recognition [55]. First,

we take the log of each posterior probability to reduce the skewedness of the

distributions. Second, principal component analysis (PCA) is applied on the log

probabilities to decorrelate the HMM input, so that we may use diagonal co-

variance matrices in the Gaussian mixture models. Third, mean and variance

normalization is applied on each of the decorrelated dimensions, within each

audio session.

Figure 2.1: Classi�cation using a tandem model (ANN+HMM).

2.3 Complimentary Rescoring:
SVM-GMM-Supervectors for Audio Segments

Researchers in automatic speaker identi�cation have recent ly developed a set of

algorithms that boost classi�cation performance by feedin g the likelihood out-
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put of a generative model (usually an adapted Gaussian mixture model) to the

input of a discriminative classi�er (usually an SVM) [56]. T he SVM-GMM-

supervector approach is not practical as a �rst-pass segmen ter for AED, because

it requires some type of hypothesized segment boundaries. Given the bound-

aries chosen by a connectionist-HMM �rst-pass system, the S VM-GMM is able

to ef�ciently compute con�dence scores for each of the propo sed segment la-

bels. The SVM-GMM is robust to background noise owing to the parametric

modeling of frame-level feature distribution. It discriminates between the can-

didate classes, with scores normalized by adaptation of a common multi-mode

Gaussian mixture distribution.

We refer to the audio observation between two adjacent boundaries as an au-

dio segment. The SVM-GMM-supervector approach approximates the joint dis-

tribution of all feature vectors in each audio segment with a GMM, from which

a GMM supervector is constructed as a summary of the segment. The pairwise

Euclidean distances between these supervectors characterize the difference be-

tween the audio segments. Kernels derived from these distances are used in an

SVM for classi�cation.

Figure 2.2 demonstrates that each audio segment is represented as an ensem-

ble of frame-based feature vectors, whose distribution is approximated by a set

of Gaussians adapted from the global Gaussian mixtures, or the universal back-

ground model.

2.3.1 Universal background model and segment-speci�c
Gaussian mixture models

We estimate a GMM for the distribution of all feature vectors in each audio

segment. Instead of separately estimating a GMM for each audio segment, we

estimate a GMM for each audio segment by adapting, to each audio segment,

the parameters of a universal background model (UBM): a GMM that has been

previously trained to represent all types of audio. Adaptive training creates a
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Figure 2.2: GMMs (indicated by the ovals) summarize audio segments using
multiple unimodal Guassians (indicated by the circles).

regularized estimate of the true, underlying likelihood function governing each

audio segment. Regularization (adaptative training based on a UBM) reduces the

effects of outliers, e.g., noisy frames in an audio segment. Adaptive training also

provides a natural measure of the difference between any given audio segment

and the UBM, since each Gaussian component in the segment-speci�c likeli-

hood has been adapted from a particular component of the UBM. Conversely,

the use of a GMM allows arbitrarily precise representation of the acoustic fea-

ture likelihood, with large enough number of Gaussian components. Finally,

the GMM clusters similar frames, by assigning them to the same kernel in the

GMM.

We �rst estimate a UBM using feature vectors extracted from al l training au-

dio segments, regardless of their event labels. Then the distribution model of the

feature vector for a certain audio segment is adapted from the UBM in order to

maximize the a posteriori probability of the adapted model [63].

Here we denote z 2 R
d as a feature vector, where d is the dimension of the
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feature vector. The GMM distribution of variable z is

p(z; �) =
K
X

k=1

wkN (z; �k; �k); (2.3)

where � = fw1; �1; �1; � � � g, wk, �k and �k are the weight, mean, and covari-

ance matrix of the kth Gaussian kernel, respectively, and K is the total number

of Gaussian kernels.

The density is a weighted linear combination of K unimodal Gaussian densi-

ties, namely,

N (z; �k; �k) =
1

(2�)
d
2 j�kj

1

2

e� 1

2
(z��k)T ��1

k
(z��k): (2.4)

We obtain maximum likelihood parameters for the UBM using expectation-

maximization (EM). For computational ef�ciency, the covar iance matrices are

restricted to be diagonal, which proves to be effective and computationally eco-

nomical.

The UBM, learned from all training audio, speci�es a feature d omain, of

which each segment-speci�c GMM span a subset. The subset con straint can

be enforced by interpreting the UBM parameter set, �, as a set of conjugate-

prior PDFs governing the distribution of segment-speci�c G MM parameters, �,

i.e., the segment-speci�c GMM has the a priori PDF p(�; �). The a posteriori

probability of the segment-speci�c GMM parameters is obtai ned by multiplying

p(�; �) by the data likelihood, p(Zj�), where Z = fz1; : : : ; zHg are the frames

observed belonging to the segment of interest, and by then dividing by a nor-

malizing constant; the normalizing constant is irrelevant to computation of the

model parameters, and may be omitted. Thus, for example, MAP adaptation

17



selects the segment-speci�c mean parameters �̂k to maximize

ln p(�̂; Z) =
K
X

k=1

ln N (�̂k; �k; �k=r)

+
H
X

i=1

ln
K
X

k=1

wkN (zi; �̂k; �k); (2.5)

where �̂ = f�̂1; : : : ; �̂Kg is the set of segment-speci�c GMM parameters, and

� = fw1; �1; �1; : : :g are the parameters of the global GMM.

The joint distribution function p(�̂; Z) has the same form as the likelihood

function p(Zj�̂), and may therefore be optimized in the same way as a likeli-

hood function, i.e., using EM with the hidden variable Pr(kjzi) as the posterior

probability of the Gaussian component k for given feature vector zi [64]. In the

E-step, we compute the posterior probability as

Pr(kjzi) =
wkN (zi; �k; �k)

PK
j=1 wjN (zi; �j; �j)

; (2.6)

nk =
H
X

i=1

Pr(kjzi); (2.7)

and then the M-step updates the mean vectors, namely,

Ek(Z) =
1

nk

H
X

i=1

Pr(kjzi)zi; (2.8)

�̂k = �kEk(z) + (1 � �k)�k; (2.9)

where �k = nk=(nk + r). MAP adaptation using conjugate priors is useful be-

cause it interpolates, smoothly, between the hyper-parameters �k and the max-

imum likelihood parameters Ek(Z). In this work, r is adjusted empirically. If

a Gaussian component has a high probabilistic count, nk, then �k approaches 1

and the adapted parameters emphasize the new suf�cient stat istics; otherwise,

the adapted parameters are determined by the global model.
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2.3.2 Approximating Kullback-Leibler divergence

Two segment-speci�c GMMs adapted from the same UBM are denoted as ga

and gb. A natural similarity measure between these two GMMs is the Kullback-

Leibler divergence,

D(gajjgb) =

Z

z

ga(z) log
ga(z)

gb(z)
dz :

The Kullback-Leibler divergence does not satisfy the conditions for a metric

function. Instead, we can use its upper bound obtained by the log-sum inequality,

D(gajjgb) �
K
X

k=1

wk D(N (z; �a
k; �k)jj N (z; �b

k; �k)) ;

where �a
k and �b

k denote the adapted means of the kth component from the seg-

ment GMMs ga and gb , respectively. Since the covariance matrices are shared

across all adapted GMMs and the UBM, the right-hand side is equal to

d(a; b)2 =
1

2

K
X

k=1

wk(�a
k � �b

k)T ��1
k (�a

k � �b
k) :

We can consider d(a; b) as the Euclidean distance between the normalized

GMM supervectors in a high-dimensional feature space [65],

d(a; b) = k�(Za) � �(Zb)k 2 ; (2.10)

where

�(a) = [

r

w1

2
�

� 1

2

1 �a
1 ; � � � ;

r

wK

2
�

� 1

2

K �a
K ] : (2.11)

2.3.3 Kernel for SVM

GMM supervectors are used in an SVM for acoustic event classi�cation. This

multi-class classi�cation task is implemented as binary cl assi�cation problems
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via the one-vs.-one method using LibSVM [66]. The distance de�ned in (2.10)

can be evaluated using kernel functions, as

d(a; b) =
p

K(a; a) � 2K(a; b) + K(b; b) : (2.12)

It is straightforward that kernel function K(a; b) = �(a) � �(b) satis�es (2.12),

where �(a) and �(b) are de�ned as in (2.11).

2.4 Hybrid Architecture of the AED System

Both the HMM-based approach and the tandem HMM-connectionist approach

engage the maximum a posteriori (MAP) decoding for AED: the recognizer out-

puts a sequence of hypothesized acoustic events corresponding to the highest

sequence a posterior probability, as discussed in Section 2.1. However, the

best acoustic event sequence obtained by the MAP decoding is not optimal ac-

cording to the performance measure for AED, AED � ACC, i.e. the acoustic

event F-score (harmonic mean of precision and recall). For example, Mangu,

Brill and Stolcke [67] proposed solving a similar problem using localized con-

�dence rescoring: the MAP decoder de�nes a reduced search sp ace, within

which a new hypothesis is chosen explicitly to minimize the target performance

measure. Con�dence scoring also allows us to apply methods su ch as SVM-

GMM-supervector classi�cation, which are dif�cult to appl y in a MAP decoding

paradigm because of computational complexity and model structure limitations.

In this work, our AED system uses a two-stage hybrid architecture (Figure

2.3). In [67] a rescoring paradigm aligns all of the edges in an event lattice to

the times marked in the MAP hypothesis. In the AED task, the number of labels

is small enough to obviate lattice rescoring; therefore, we can take a route that

is straightforward, yet effective and computationally inexpensive. The MAP

decoding outputs a one-best result with boundaries of events and background,

as well as hypothesized event types. The SVM-GMM-supervector approach is
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Figure 2.3: Hybrid architecture of AED system.

used as the con�dence rescoring module. It models feature fr ames within all

hypothesized audio segments, and proposes event types that might be different

from the hypothesis obtained through MAP decoding.

Both hypothesized event types, referred to as the MAP labels and the SVM la-

bels respectively, include the events of concern and a �back ground� label. There-

fore, event label substitutions, each de�ned by a MAP label a nd an SVM label,

may include substitutions between any pair of events, from an acoustic event to

background or from background to an acoustic event. On the held out develop-

ment data, the performance change is measured when only one particular type

of label substitution is allowed. Those label substitution types that lead to the

most performance boost on the held out data are chosen as the valid event label
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substitutions, to be applied in testing. All other types of label substitutions are

suppressed in testing, by retaining the MAP label.

We �nd in practice that the above valid event label substitut ions are too spe-

ci�c and sometimes do not carry over well between different d ata. Therefore, in

the experiments we only de�ne valid event label substitutio ns according to the

MAP labels. In fact, the most favorable approach turns out to allow the SVM-

GMM-supervector classi�er to assign labels to the audio seg ments labeled as

background by the MAP decoding, recovering events that were missed in the �rst

pass, but not to perform any substitutions among MAP-labeled non-background

events. Readers interested in more general methods to combine detection results

from multiple systems are refered to literature about the Recognition Output

Voting Error Reduction (ROVER) [68], particularly its voting search modules.

The hybrid architecture works for two reasons.

First, the SVM-GMM-supervector approach functions complementarily to the

MAP decoding as they operate in different hypothesis spaces. In particular, the

MAP decoding engages properties such as state transition, varying length and

N-gram event sequence statistics in the decision of boundaries and hypothe-

sized event labels. The MAP decoding might suppress proposing short events or

events similar to the background given the high variation in the background. By

contrast, the SVM-GMM-supervector approach only considers feature distribu-

tion within an audio segment locally. The purely local approach of the rescoring

module has been shown to outperform HMMs in tasks with loose sequence con-

straints [69]. Besides, the SVM-GMM-supervector approach does not impose

explicit temporal structure within the audio segments, in contrast to left-to-right

HMMs.

Second, the objective of MAP decoding differs from that of AED. For the

maximum a posteriori hypothesis, each frame in the observation is considered.

The detection metric, AED-ACC, only considers the temporal relationship be-

tween the hypothesized event boundaries and the reference event boundaries.

Furthermore, neither MAP decoding nor the SVM-GMM-supervector classi�er
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treat background and acoustic events differently, while the AED-ACC measures

only the F-score in detection of non-background events. SVM-GMM rescoring

aims at the target performance metric by constraining it to allow only label sub-

stitutions (changes from the MAP labels) that are believed to improve the AED

performance metric.

2.5 Seminar Room AED Experiments

2.5.1 Dataset and metric

The acoustic event detection experiments use the of�cial da ta for CLEAR 2007

AED Evaluation [1]: about three hours for system development and two hours

for system evaluation. All data are realistic seminar style, having both speech

and acoustic events with possible overlap. The evaluation data has 1454 in-

stances of target events. The target events included in the AED performance

metric are door slam (ds), paper wrapping (pw), footsteps (st), phone ringing

(pr), spoon cup jingle (cl), keyboard typing (kt), applause (ap), coughing (co),

laughter (la), key jingle (kj), chair moving (cm), and knocking (kn). The counts

of these events in the evaluation data are as in Figure 2.4. Many of the events

are subtle and have low SNR compared to background noise or speech.

The performances are measured using AED-ACC [1], de�ned as th e F-score

(the harmonic mean between precision and recall) comparing system output

acoustic event (AE) labels and reference AE labels. In particular, an event de-

tected by the system is correct when there exists at least one matching reference

event whose temporal center falls within the time boundaries of the detected

event or the temporal center of the detected event is within the boundaries of at

least one matching reference event. A reference event is considered correctly

detected if its temporal center is within at least one matching system output or

if there exist at least one matching system output whose temporal center falls

within the boundaries of the reference event. AED-ACC aims to score detection
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Figure 2.4: Counts of the twelve acoustic events in the evaluation data.

and classi�cation of all acoustic event instances, oriente d for applications such

as real-time services for smart rooms and audio-based surveillance.

2.5.2 Experiment setup

The audio features used in these experiments are AED feature derived using a

modi�ed AdaBoost approach we proposed in [42]. The feature po ol consists

of two feature sets widely-used in speech recognition as well as other audio

applications. The �rst set consists of 26 MFCCs calculated in t he 0 Hz - 11000

Hz band along with their �rst order regression (delta) coef� cients and second

order regression (acceleration) coef�cients. The second s et consists of 26 log

frequency �lter bank parameters, their delta and accelerat ion coef�cients on the

same frequency range. The AED feature set is derived using a boosting approach

from the union of the two baseline feature sets. The AED feature set used has

78 feature components.

Two sets of experiments are carried out to demonstrate the performance of

the tandem connectionist-HMM approach and the SVM-GMM-supervector ap-
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proach for re�ning event label hypotheses.

The �rst experiment evaluates the tandem connectionist-HM M approach. The

contextual window size (number of input nodes divided by 78) is picked to be

�ve. The number of hidden nodes is chosen as 1200 empirically for best perfor-

mance on a development dataset. The number of output nodes is set to 14, i.e.,

the number of acoustic events plus one for frames labeled as unknown sounds

and one for background frames. The transformed output of the best-performing

ANN is concatenated with the derived AED feature set as the input to the HMM

component.

The second experiment presents performance of the SVM-GMM-supervector

approach discussed in Subsection 2.3, used in the hybrid architecture discussed

in Subsection 2.4. The number of Gaussian mixtures is set to be 128. Two sets

of results are reported, obtained by applying the approach on top of either the

HMM-based approach or the tandem connectionist-HMM approach.

When training the systems, we hold out one third of the three hour develop-

ment data to tune some system parameters. Once the parameters are determined,

the models are retrained with all the development data.

2.5.3 Results

In Table 2.1, we demonstrate the effectiveness of the tandem HMM-connectionist

approach and the SVM-GMM-supervector approach used in the hybrid archi-

tecture. We can observe that the average AED-ACC across all twelve events

improves from 34% to 35.3% by engaging the tandem approach (denoted as

�Tandem�). The SVM-GMM-supervector (denoted as �HMM+S�) b oosts per-

formance from 34% to 37.5% by relabeling event segments proposed by the

HMM-based AED system (denoted as �HMM�), as described in Sub section 2.4.

Using this hybrid architecture of both tandem and SVM-GMM-supervector ap-

proaches yields the best AED-ACC of 41.2% (denoted as �Tandem +S�).

Performance on individual acoustic events is also presented for the different
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settings. It is shown that the number of individual acoustic events scoring the

highest is the largest for the best setting of �Tandem+S�. Th e single most dra-

matic performance boost on an individual event is that of �ke yboard typing�

(kt), achieved by engaging the SVM-GMM-supervector approach. The MAP

decoding approaches, i.e., HMM or tandem approaches, could not well distin-

guish �keyboard typing� from background. In fact, many even ts that are eas-

ily confused with the background in the �rst pass, e.g., �key board typing� and

�steps�, are recovered for reasons discussed in Subsection 2.4. This highlights

that the SVM-GMM-supervector in the hybrid architecture has capability com-

plementary to the MAP decoding approaches. The best setting of �Tandem+S�

performs signi�cantly better than the baseline HMM-based s ystem according to

the Friedman’s test (p = 0:02).

All results presented here are improved from our system in the 2007 CLEAR

Acoustic Event Detection Evaluation, where we achieved the best performance,

similar to the performance of the baseline HMM system in Table 2.1.

2.6 Acoustic Fall Classi�cation and Detection
Experiments

Assistance to dependent people, particularly to the elderly living alone at home,

has been attracting increasing attention in today’s aging societies [3]. Reliable

and speedy detection of falls by automatic monitoring of the home is expected

to be of bene�t to both elderly and caregivers.

We apply the AED methods to automatic fall detection using one unobtrusive

far-�eld microphone. The detection task identi�es existen ce and approximate

occurrence time of falls. Segment boundaries of the acoustic input are found

by the Viterbi algorithm using single-state HMMs (GMMs) with self-transitions

for different falls and other noise events. A bigram model is trained on the

fall, noise and background sequences observed in the training data. Each audio

26



Table 2.1: Effectiveness of different components in the AED system.

AED-ACC (%) ap cl cm co ds kj kn kt la pr pw st Average

HMM 44.4 25.5 31.3 31.2 57.3 33.2 13.5 1.9 51.3 36.7 17.6 36.8 34.0
Tandem 52.6 21.9 37.2 51.3 63.0 29.6 11.5 0.0 54.2 42.7 25.8 34.6 35.3
HMM+S 44.4 25.0 33.7 31.2 56.6 33.2 20.9 35.5 51.3 36.7 19.2 41.3 37.5

Tandem+S 52.6 21.5 37.4 47.9 63.0 29.6 13.6 44.8 58.6 42.7 26.7 44.4 41.2
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Table 2.2: Sound classes for fall classi�cation and detecti on.

FA sound resulting from the subject falling
ST noise when the subject sits down on the

chair, possibly leading to a bit of chair
movement

CL noise of clapping hands
GU noise when the subject gets up from the

�oor
MP noise of moving, putting, or catching an

object
DO noise of dropping an object on the �oor
DN noise of opening/closing doors
WK noise of walking steps
MO other noise, including speech and non-

speech human voices, telephone ringing
and other acoustically salient noise

BG background noise, usually not perceptu-
ally salient

segment is classi�ed into fall or various types of noise, eit her directly using the

hypothesis labels obtained in the Viterbi algorithm or after being re�ned by the

SVM-GMM-supervector approach.

To better distinguish fall from all competing noise, we model falls and nine

classes of noise in the living environment. These classes, shown in Table 2.2, are

adopted with three considerations: Each class should have a suf�cient number

of instances in the training data. Each class is relatively distinguishable from

others. The classes are chosen to better distinguish falls from noise.

2.6.1 Dataset

Our experiments are carried out on the acoustic fall data collected in the Euro-

pean project Netcarity [3, 70]. The dataset 1 is of about 7 hours in 32 sessions,

involving 13 different actors as subjects that might fall or perform other activi-

ties, and various other people that produce noise in the background. Figure 2.5

1We would like to thank the authors of [70] for the Netcarity dataset, and Vit Libal and Larry
Sansone for assistance with the dataset.

28



provides a snapshot. This dataset well simulates an environment that elderly

people might encounter at home. We split the dataset into 20 training sessions, 7

testing sessions and 5 held out sessions for tuning the parameters. The subjects

in the training and held out sessions do not overlap with those in testing. We

map the labels in the Netcarity dataset to the ten classes detailed in Table 2.2 as

the ground truth.

Figure 2.5: Snapshot of Netcarity fall dataset (boundaries omitted for
simplicity).

2.6.2 Experiment setup

The �rst experiment is classi�cation of audio segments whos e ground-truth bound-

aries are provided. Classi�cation accuracy of all the ten cla sses in Table 2.2

re�ects the overall performance of the classi�ers. F-score of the fall segments

re�ects the capability to distinguish falls from all other n oise. Both the GMM

approach and the SVM-GMM-supervector approach are implemented with 512

Gaussian components for each GMM in this experiment.

The second experiment is detection of falls in acoustic signal of whole ses-
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sions. We measure the detection performance using AED-ACC [1], the har-

monic mean between precision and recall. In the fall detection experiment, we

further require that all proposed fall segments not exceed a maximum length of

5 seconds so that the system output can be used for timely response to falls. Fall

segments that exceed 5 seconds, if any, are removed from the output before scor-

ing. We choose detection using the dynamic programming algorithm with the

GMM audio segment modeling as our baseline. The SVM-GMM-supervector

approach is adopted to re-classify the audio segments with perceptually confus-

able labels in the baseline output. In this dataset, the perceptually confusable

labels are chosen to be falls (FA), dropping objects (DO), getting up (GU) and

walking (WK).

The frame-based features are extracted from 25 ms Hamming windows with a

step size of 10 ms We calculate 12 perceptual linear predictive (PLP) coef�cients

and the overall energy. On these 13 dimensions, utterance level cepstral mean

subtraction is applied.

2.6.3 Results

Figure 2.6 illustrates the classi�cation accuracy of all th e ten fall/noise classes,

and the F-score for fall segments. The results show that the SVM-GMM-supervector

approach improves from the GMM approach on classifying fall and noise seg-

ments.

Figure 2.7 illustrates that using the SVM-GMM-supervector approach to re-

classify confusable segments improves AED-ACC measure of the baseline out-

put produced by the Viterbi algorithm using the GMMs.

In these results, we can see that in general the method that performs well in

the classi�cation of falls and other noise categories also p rovides better measures

in which we only care about the falls, i.e. the F-score of falls in classi�cation

and the AED-ACC in fall detection. This suggests that better modeling of the

alternative categories, including background, improves the capability to identify
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Figure 2.6: Classi�cation of falls/noise.

Figure 2.7: Detection of falls.

the target category.
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CHAPTER 3

GENERAL IMAGE AND VIDEO
MODELING

Real world events present signi�cant variation in the visual cues, even after var-

ious computer vision processing, such as motion detection, background subtrac-

tion and lighting normalization. Most previous research on video event analy-

sis is limited to video captured by �xed cameras in surveilla nce applications or

greatly constrained live video. Even more challenging is video event recognition

in unconstrained domains such as broadcast news, which contains rich informa-

tion about objects, people, activities, and events [47]. For example, events in

broadcast news video may involve small objects, large camera motion, and sig-

ni�cant object occlusion, and reliable object tracking bec omes very challenging

under these scenarios.

Some recent research attempted to provide solutions for event analysis in news

video. Ebadollahi et al. [71] proposed to treat each frame in a video clip as an

observation and apply HMM to model the temporal patterns of event evolu-

tion in news video. Xu and Chang [28] proposed to encode a video clip as a

bag of orderless descriptors obtained from mid-level semantic concept classi-

�ers extracted from all of the constituent frames, along wit h the global features

extracted within each video frame, and then apply the Earth Mover’s Distance

(EMD) [72] to integrate similarities among frames from two video clips. Multi-

level temporal pyramid structure was adopted to integrate the information from

different sub-clips with integer-value constrained EMD to explicitly align the

sub-clips.

Specialized object or semantic concept detectors, such as those for faces,

hands, computer screens, books and human �gures, have been s uccessfully used
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to provide discriminative cues for event detection [34, 35, 28]. Such lower level

detectors are believed to provide robust representation for realistic images and

video clips. We take an alternative approach, intending not to train ad-hoc and

specialized object detectors, which require expensive annotation for training im-

ages.

We propose Gaussianized vector representation for realistic image and video

modeling. Each image or video clip is expressed as a set of patch-based local

descriptors. Such descriptors can be extracted by a feature point detector, such

as the SIFT detector [73], or from a dense pixel grid. We use a Gaussian mixture

model (GMM) to approximate the distribution of these local descriptors in each

image or video clip. These Gaussian components are adapted from a global

set of Gaussian components according to the maximum a posteriori criterion.

This establishes unsupervised correspondence between different images or video

clips, and suppresses noise in the distributions. The Gaussianized vector repre-

sentation is constructed from an image-speci�c or video-cl ip-speci�c GMM by

taking properly normalized mean vectors of all the Gaussian components, thus

forming a corresponding and uniform-length representation for images or video

clips of different sizes and lengths. It is shown that the linear kernel based on

such representations approximates the KL divergence between local descriptor

distributions of different images or video clips.

Before the kernels are used for categorization or localization problems, a

Within-Class Covariance Normalization (WCCN) approach is utilized to de-

press the kernel components with high-variability for data labeled as the same

category. The re�ned kernel is used as a similarity measurem ent in the nearest

neighbor or nearest centroid classi�cation, as well as in a s upport vector machine

[74] for margin-based classi�cation.

For video events in broadcast news, we successfully demonstrated that the

patch-based Gaussianized vector representation achieves the best reported event

categorization accuracy, by effective modeling of whole images without anno-

tating the training images [50]. In particular, our results reported in [50] out-
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performed the then state-of-the-art [28] based on a set of specialized semantic

detectors trained on human-annotated images.

Different from classi�cation or regression problems that w ork on the whole

images, an object localization task involves �nding the rec tangle bounding boxes

that scored the highest according to a particular video model, with varying loca-

tions, widths and heights. A natural way to carry out localization is the sliding

window approach [30]. However, an exhaustive search in an n � n image needs

to evaluate O(n4) candidate bounding boxes, and is not affordable for a com-

plicated representation such as the Gaussianized vector representation. Tricky

heuristics about possible bounding box locations, widths and heights, or local

optimization methods would have to be used, resulting in false estimates. This

intrinsic trade-off between performance and ef�ciency of t he sliding window ap-

proach is not desirable. Lampert et al. introduced a branch-and-bound search

scheme [75], which �nds the globally optimal bounding box ef �ciently without

the above problems.

I present an ef�cient object localization approach based on the Gaussianized

vector representation. The branch-and-bound search scheme [75] is adopted to

perform a fast hierarchical search for the optimal bounding boxes, leveraging a

quality bound for rectangle sets. We demonstrate that the quality function based

on the Gaussianized vector representation can be written as the sum of contribu-

tions from each feature vector in the bounding box. Moreover, a quality bound

can be obtained for any rectangle set in the image, with little computational cost,

in addition to calculating the Gaussianized vector representation for the whole

image. Experiments on a multi-scale car dataset show that the proposed object

localization approach based on the Gaussianized vector representation outper-

forms previous work using the histogram-of-keywords representation.
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3.1 Gaussianized Vector Representation

The Gaussian mixture model (GMM) is widely used in various pattern recog-

nition problems [76, 77]. We propose the Gaussianized vector representation,

which encodes an image as a bag of feature vectors, the distribution of which is

described by a GMM. Then a GMM supervector is constructed using the means

of the GMM, normalized by the covariance matrices and Gaussian component

priors. A GMM-supervector-based kernel is designed to approximate Kullback-

Leibler divergence between the GMMs for any two images, and is utilized for

supervised discriminative learning using an SVM, nearest neighbor or nearest

centroid methods.

The Gaussianized vector representation is closely connected to the classic his-

togram of keywords representation. In the traditional histogram representation,

the keywords are chosen by the k-means algorithm on all the features. Each fea-

ture is distributed to a particular bin based on its distance to the cluster centroids.

The histogram representation obtains rough alignment between feature vectors

by assigning each to one of the histogram bins. Such a representation provides a

natural similarity measure between two images based on the difference between

the corresponding histograms. However, the histogram representation has some

intrinsic limitations. In particular, it is sensitive to feature outliers, the choice of

bins, and the noise level in the data. Besides, encoding high-dimensional feature

vectors by a relatively small codebook results in large quantization errors and

loss of discriminability.

Several approaches have been proposed in the literature to overcome these

limitations. Soft assignment, which allows each feature vector to belong to mul-

tiple histogram bins, has been suggested to capture partial similarity between

images [78, 79, 80, 81, 82, 83]. To enhance the discriminating capability of his-

tograms, Farquhar et al. [84] and Perronnin et al. [78] introduced several ways

to construct category-speci�c histograms. Larlus and Juri e [85] and Yang et al.

[79] suggested to integrate histogram construction with classi�er training, and
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Moosmann et al. [86] proposed to use randomized forests to build discriminative

histograms.

Gaussianized vector representation enhances the histogram representation in

the following ways. First, k-means clustering leverages the Euclidean distance,

while the GMM leverages the Mahalanobis distance by means of the compo-

nent posteriors. Second, k-means clustering assigns one single keyword to each

feature vector, while the Guassinized vector representation allows each fea-

ture vector to contribute to multiple Gaussian components statistically. Third,

histogram-of-keywords only uses the number of feature vectors assigned to the

histogram bins, while the Gaussianized vector representation also engages the

weighted mean of the features in each component, leading to a more informative

representation.

3.1.1 GMM for feature vector distribution

We estimate a GMM for the distribution of all feature vectors in an image. The

estimated GMM is a compact description of the single image, less prone to noise

compared with the feature vectors. Yet, with increasing number of Gaussian

components, the GMM can be arbitrarily accurate in describing the underlying

feature vector distribution. The Gaussian components impose an implicit multi-

mode structure of the feature vector distribution in the image. When the GMMs

for different images are adapted from the same global GMM, the corresponding

Gaussian components imply certain correspondence.

In particular, we obtain one GMM for each image in the following way.

First, a global GMM is estimated using feature vectors extracted from all

training images, regardless of their labels. Here we denote z as a feature vector,

whose distribution is modeled by a GMM, a weighted linear combination of K
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unimodal Gaussian components,

p(z; �) =
K
X

k=1

wkN (z; �global
k ; �k):

� = fw1; �global
1 ; �1; � � � g, wk, �k and �k are the weight, mean, and covariance

matrix of the kth Gaussian component,

N (z; �k; �k) =
1

(2�)
d
2 j�kj

1

2

e� 1

2
(z��k)T ��1

k
(z��k): (3.1)

We restrict the covariance matrices �k to be diagonal [87], which proves to be

effective and computationally economical.

Second, an image-speci�c GMM is adapted from the global GMM, using

the feature vectors in the particular image. This is preferred to direct separate

estimation of image-speci�c GMMs for the following reasons :

1. It improves robust parameter estimation of the image specialized GMM,

using the comparatively small number of feature vectors in the single im-

age.

2. The global GMM learned from all training images may provide useful

information for the image specialized GMM.

3. As mentioned earlier, it establishes correspondence between Gaussian com-

ponents in different images-speci�c GMMs.

For robust estimation, we only adapt the mean vectors of the global GMM

and retain the mixture weights and covariance matrices. In particular, we adapt

an image-speci�c GMM by the maximum a posteriori (MAP) crite rion with the

weighting all on the adaptation data. The posterior probabilities and the updated

means are estimated as

Pr(kjzj) =
wkN (zj; �global

k ; �k)
PK

k=1 wkN (zj; �global
k ; �k)

; (3.2)
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�k =
1

nk

H
X

j=1

Pr(kjzj)zj; (3.3)

where nk is a normalizing term,

nk =
H
X

j=1

Pr(kjzj); (3.4)

and Z = fz1; : : : ; zHg are the feature vectors extracted from the particular im-

age.

As shown in Equation 3.2, the image-speci�c GMMs leverage st atistical mem-

bership of each feature vector among multiple Gaussian components. This sets

the Gaussianized vector representation apart from the histogram of keyword rep-

resentation which originally requires hard membership in one keyword for each

feature vector. In addition, Equation 3.3 shows that the Gaussianized vector rep-

resentation encodes additional information about the feature vectors statistically

assigned to each Gaussian component, via the means of the components.

Given the computational cost concern for many applications, another advan-

tage of using GMM to model feature vector distribution is that ef�cient approxi-

mation exists for GMM that does not signi�cantly degrade its effectiveness. For

example, we can prune out Gaussian components with very low weights in the

adapted image-speci�c GMMs. Another possibility is to elim inate the additions

in Equation 3.3 that involve very low priors in Equation 3.2. Neither of these ap-

proaches signi�cantly degrades GMM’s capability to approx imate a distribution

[76].

3.1.2 Kernel function based on Gaussianized vector
representation

Suppose we have two images whose ensembles of feature vectors, Za and Zb, are

modeled by two adapted GMMs according to Section 3.1.1, denoted as ga and gb.

A natural similarity measure is the approximated Kullback-Leibler divergence
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[56]

D(gajjgb) �
K
X

k=1

wkD(N (z; �a
k; �k)jjN (z; �b

k; �k)); (3.5)

where �a
k denotes the adapted mean of the kth component from the image-

speci�c GMM ga, and likewise for �b
k. The right side of the above inequality

is equal to

d(Za; Zb) =
1

2

K
X

k=1

wk(�a
k � �b

k)T ��1
k (�a

k � �b
k): (3.6)

The term d(Za; Zb)
1

2 can be considered as the Euclidean distance in another

high-dimensional feature space,

d(Za; Zb) = k�(Za) � �(Zb)k
2

�(Za) = [

r

w1

2
�

� 1

2

1 �a
1; � � � ;

r

wK

2
�

� 1

2

K �a
K ]: (3.7)

Thus, we obtain the corresponding kernel function

k(Za; Zb) = �(Za) � �(Zb): (3.8)

3.2 Robustness to Within-Class Variation

The variation of the object class and the background adds to the dif�culty of

the localization problem. The Gaussianized vector representation is based on

Gaussian mixtures adapted from the global model. To further enhance the dis-

criminating power between objects and the background, we propose incorpo-

rating a normalization approach, which depresses the kernel components with

high-variation within each class. This method was �rst prop osed in the speaker

recognition problem [88] as Within-Class Covariance Normalization (WCCN).

We assume the Gaussianized vector representation kernels in Equation 3.8 are

characterized by a subspace spanned by the projection matrix V all. The desired

normalization suppresses the subspace, V , that has the maximum inter-image
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distance dV for images (or image regions for the localization application) of the

same category (or either the object or the background):

dab
V = kV T �(Za) � V T �(Zb)k

2: (3.9)

Since V identi�es the subspace in which feature similarity and labe l similarity

are most out of sync, this subspace can be suppressed by calculating the kernel

function as in Equation 3.10, where C is a diagonal matrix, indicating the extent

of such asynchrony for each dimension in the subspace.

k(Za; Zb) = �(Za)T (I � V CV T )�(Zb): (3.10)

We can �nd the subspace V by solving the following:

V = arg max
V T V =I

X

a 6=b

dab
V Wab; (3.11)

where Wab=1 when Za and Zb both belong to the object class or the background

class, otherwise Wab = 0.

Denote Ẑ = [�(Z1); �(Z2); � � � ; �(ZN)], where N is the total number of train-

ing images; it can be shown that the optimal V consists of the eigenvectors cor-

responding to the largest eigenvalues � of the matrix Ẑ(D � W )ẐT , where D

is a diagonal matrix with Dii =
PN

j=1 Wij ; 8i.

The eigenvalues � indicate the extent to which the corresponding dimensions

vary within the same class. In order to ensure the diagonal elements of C remain

in the range of [0; 1], we apply a monotonic mapping C = 1 � max(I; �)�1.
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3.3 Categorization with Gaussianized Vector
Representation

3.3.1 Nearest neighbor or nearest centroid

The video event recognition, as a categorization problem, can be conducted di-

rectly based on the kernel similarity and the nearest neighbor or nearest centroid

approach. Here we use the kernel similarity between a testing video clip and

the centroid of an event for similarity metric, where the centroid of an event is

de�ned in the Gaussianized vector space: namely, the centro id, �Zs, of the s-th

event is

�( �Zs) =
1

N s

X

i2�s

�(Zi); (3.12)

where Zi is the set of patch-based descriptors extracted from the i-th training

video clip, N s is the number of video clips belonging to the s-th event, and �s

denotes the index set of the samples belonging to the s-th event. Then, the �nal

video event recognition is based on normalized similarity vector as

C1(Z) = [
K(Z; �Z1)

P

s K(Z; �Zs)
;

K(Z; �Z2)
P

s K(Z; �Zs)
; � � � ;

K(Z; �ZS)
P

s K(Z; �Zs)
];

where S is the total number of prede�ned event categories, and Z is the set of

patch-based descriptors extracted from a test video clip.

3.3.2 Support vector machine

Alternatively, a support vector machine (SVM) is used with the above kernel to

distinguish between categories, or between objects and backgrounds. The binary

classi�cation score for a test image can be formulated as

g(Z) =
X

t

�tk(Z; Zt) � b; (3.13)
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where �t is the learned weight of the tth training sample Zt and b is a threshold

parameter. k(Z; Zi) is the value of a kernel function for the tth training Gaus-

sianized vector representation Zi and the test Gaussianized vector representation

Z.

Similarly, the multi-class SVM can also output a con�dence v ector, denoted

as

C2(Z) = [p1(Z); p2(Z); � � � ; pS(Z)]; (3.14)

where ps(Z) can be roughly considered as the probability of the video clip or

image belonging to the s-th category. Then, the classi�cation can be conducted

based on the output values in C2(Z).

The support vectors and their corresponding weights are learned using the

standard quadratic programming optimization process. We use the SVM training

tools implemented in Libsvm [66] for both binary classi�cat ion and multi-class

classi�cation.

3.3.3 Combining different classi�ers

The motivations of centroid-based video event recognition and margin-based

video event recognition are essentially different. Our preliminary experiments

show that the outputs from these two classi�ers are often com plementary to each

other; therefore, we can optionally fuse the outputs from these two classi�ers.

The vectors C1(Z) and C2(Z) both roughly measure the probabilities that a test

video clip belongs to different video events, and hence we can average them for

a more robust output as

C(Z) =
C1(Z) + C2(Z)

2
: (3.15)

The classi�cation can be done based on the averaged probabil ity vector C(Z).
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3.3.4 Visualizing the Gaussianized vector representation

We visualize the Gaussianized vector representation to demonstrate that soft cor-

respondence across different video clips is established and much more informa-

tion than the histogram-of-keywords is represented.

Each video clip is �rst represented as a set of patch-based lo cal descriptors.

We project these local descriptors into a 2D feature space using a dimensionality

reduction technique, Locality Preserving Projection [89]. All the component

means of the global GMM are mapped to this 2D space. For local descriptor, its

coordinates in this 2-D space are the sums of the coordinates of the component

means of the global GMM, weighted by the posteriors of the components for the

given descriptor.

Figure 3.1 shows the 2D distributions of the patch-based descriptors from

three video clips, two of which belong to the same video event category of Elec-

tion Campaign Greeting, and the other to the video event of Running. We can

see that the distributions in the 2D space are characterized by distribution near

different components of the global GMM, as indicated by the different colors in

Figure 3.1. These components implicitly establish the correspondence between

patch-based descriptors in different video clips, which shows that the Gaussian-

ized vector representation offers the capability to match the patches from two

video clips, similar in content yet different in spatial positions, scales, and tem-

poral positions. For the video clips from the same event category we can see

that the feature vector distributions near the corresponding components tend to

share a similar structure, while they are relatively more different for those from

different categories.
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Figure 3.1: Visualization of the Gaussianized vector representation and its
capability of matching local visual cues different in spatial positions, scales,
and temporal positions.

3.4 Localization with Gaussianized Vector
Representation

Object localization predicts the bounding box of a speci�c object class within the

image. Effective object localization relies on an ef�cientand effective searching

method, and robust image representation and learning method. The task remains

challenging due to within-class variations and the large search space for candi-

date bounding boxes.

Robust image representation and learning is critical to the success of various

computer vision applications. Some of the successful features are histogram

of oriented gradients [90] and Haar-like features [91]. Patch-based histogram-

of-keywords image representation methods represent an image as an ensemble
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