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This work presents a series of experiments which explore the utility of various acoustic
features in the classification of words as prosodically prominent or nonprominent.

For this set of experiments, a 35,009 word subset of the Buckeye Speech Corpus was used
[12]. This subset is divided across fifty-four segments of the Buckeye Speech Corpus. In
a previous study, the words were transcribed for prosodic prominence by several teams, of
sixteen naive native-speakers of English each, using the method Rapid Prosody Transcription
developed in our prior work [10]. In the present study, we mapped the quasi-continuous
valued prosody labels from the transcribed portion of the corpus to a binary prominence
label. If at least one rater deemed a word prominent, it was labeled ‘prominent’ or otherwise
it was labeled ‘nonprominent.” 15,955 were labeled ‘prominent,’ yielding a baseline chance
level of prominence assignment at 54.4%. 90% of the words were used in training the learning
algorithms and the other 10% was used in testing.

Several acoustic correlates are associated with prominence, including F0O, duration, and
intensity [1, 2, 4, 17, 3, 6, 15, 16, 11, 7, 14, 18]. The relative contribution that these
play in speech recognition and in recognition by humans is well discussed in the literature
[5, 18,9, 13].

In the first set of experiments, Support Vector Machines (SVM) were used. SVMs were
chosen because the task is a vector-input, class-label-output task, and SVMs do well at such
tasks. Here, a set of 36 features was used, including both features known to be correlated
to prominence and features not known to be correlated, such as the length of the pause
after a word. The ten best-performing features were, in order, the minimum energy of the
final vowel normalized by phones, the ratio of the energy of the current word to the next
word, the post-word pause duration, the word duration normalized by phones, the maximum
energy of the last vowel normalized by phone-class, the minimum value of f0 in the following
word, the maximum energy of the stressed vowel normalized by phone-class, the stressed
vowel duration normalized by phone-class, the minimum energy of the next word, and the
maximum energy of the word. The classification accuracy was tested with related features
clustered together into four groups: pause, duration, intensity, and pitch. The results are
reported in table 1

For the second set of experiments, Hidden Markov Models (HMM) with three hidden

SVM Features SVM acc. HMM Features HMM acc.
pause feats. 61.1 Post-Word Pause Duration (PWPD) 57.7
duration feats. 69.0 Stressed Vowel Duration (SVD) 65.1
intensity feats. 71.4 - -
pitch feats. 72.1 - -
intensity + pitch 75.1 MFCC 68.7
intensity + pitch + duration 75.8 MFCC + SVD 65.82
intensity + pitch + duration + pause 76.1 MFCC + SDV + PWPD 56.2

Table 1: Classification accuracy percent using SVMs and HMMs



Context region pre-stress | stressed syllable | post-stress
Classification accuracy 67.4 66.1 67.4

Table 2: Classification accuracy for context regions using HMMs

states were used. HMMs can take advantage of temporal information in the sequencing of
units. Mel-frequency cepstral coefficients (MFCC) were generated using HTK and were used
as the encoding of temporal features. These data were concatenated with per-word durational
measures, taken from phoneme-occurrence timestamps in the Buckeye corpus. The post-word
pause duration is the time between the end of the last phoneme in the current word and
the beginning of the first phoneme in the next word. The results for these experiments are
summarized in Table 1. Although the feature sets used between the HMM and the SVM are
not the same, they correspond to each other. Note that the classification accuracy in the
SVM is always higher. For this reason and that many of the top performing features used
in the SVM experiment were normalized features, this suggests that temporal information
is less useful than changes in the accoustic signal. These findings support evidence found in
the human perception of prosody [8].

If temporal information is useful then some temporal regions may be more useful than
others. In English, as prominence is primarily expressed on the stressed syllable [7], it may be
expected that by extracting features only from the stressed syllable we would obtain provide
better prominence classification results, with the other regions of the word contributing noise.
However, prominence also has residual effects on the rest of the word. For example, FO can
peak in the post-stress syllable [11, 7].

To test prominence detection based on the stressed-unstressed distinction within the
word, the words in Buckeye were split into three regions: pre-stress, stress, and post-stress.
MFCC vectors were extracted from each of these regions and were tested independently of
each other. The results for the three regions, reported in Table 2, are fairly similar to each
other and to the results for the trials reported earlier using MFCCs extracted from the entire
word. Thus, interesting information does exist throughout prominent words.

To see if making this contextual information more explicit could be used to improve
accuracy, a new feature was created from the sum of the log-likelihoods of each frame being
prominent given the model trained on MFCCs in the previous experiment. These values
were trained on a new HMM with an accuracy of 56.2%, which suggests that the explicit
contextual feature is not useful.

In our final experiment, we modified the classification task so that words were consid-
ered ‘prominent’ when two or more raters labeled a word as ‘prominent’ (rather than one
or more). Words which were not labeled as ‘prominent’ by any raters were still considered
‘nonprominent’ but those which were labeled by only a single rater was thrown out. Agree-
ment between labelers can provide greater confidence that the word is indeed prominent,
whereas words with only a single ‘prominent’ judgment are more likely to be mistakes. The
accuracy for this zero vs two or more classification task when only using MFCCs is 71.5%
as compared to 68.7% for the zero vs one or more task, suggesting that words with only a
single judgment of ‘prominence’ are indeed less reliable.

In this study we sought different strategies to improve learning performance. We found
that normalized features are often more informative than raw features. The contribution of



temporal regions was observed and it was found that no one region was the most informative.
And finally, by removing labels with low rater agreement, we were able to boost performance.

This study is supported by NSF I1IS-0703624 to Cole and Hasegawa-Johnson. For their
varied contributions, we would like to thank the members of the Illinois Prosody-ASR re-
search group.



References

1]
2]

3]

[13]

[14]

[15]

M. Beckman. Stress and non-stress accent. Foris Pubns USA, 1986.

M. Beckman and J. Edwards. Articulatory evidence for differentiating stress categories.
Phonological structure and phonetic form, page 7, 1994.

T. Cambier-Langeveld and A. Turk. A cross-linguistic study of accentual lengthening:
Dutch vs. English. Journal of Phonetics, 27(3):255-280, 1999.

J. Cole, H. Kim, H. Choi, and M. Hasegawa-Johnson. Prosodic effects on acoustic cues
to stop voicing and place of articulation: Evidence from Radio News speech. Journal
of Phonetics, 35(2):180-209, 2007.

A. Cutler, D. Dahan, and W. Van Donselaar. Prosody in the comprehension of spoken
language: A literature review. Language and speech, 40(2):141, 1997.

G. Kochanski, E. Grabe, J. Coleman, and B. Rosner. Loudness predicts prominence:
Fundamental frequency lends little. The Journal of the Acoustical Society of America,
118:1038, 2005.

D. Ladd. Intonational phonology. Cambridge Univ Pr, 2008.

Y. Mo. Prosody production and perception with conversational speech. PhD thesis,
University of Illinois Urbana-Champaign, 2010.

Y. Mo, J. Cole, and J. Hasegawa-Johnson. How do ordinary listeners perceive prosodic
prominence? Syntagmatic vs. Paradigmatic comparison. In Poster presented at the
157th Meeting of the Acoustical Society of America, Portland, Oregon., 2009.

Y. Mo, J. Cole, and E. Lee. Naive listeners prominence and boundary perception. Proc.
Speech Prosody, Campinas, Brazil, pages 735-738, 2008.

J. Pierrehumbert. The phonology and phonetics of English intonation. MIT Cambridge,
MA, 1980.

M. A. Pitt, L. Dilley, K. Johnson, S. Kiesling, W. Raymond, E. Hume, and et al.
Buckeye corpus of conversational speech (2nd release). Columbus, OH: Depart-
ment of Psychology, Ohio State University, 2007. Retrieved March 15, 2006, from
www.buckeyecorpus.osu.edu.

A. Rosenberg. Automatic Detection and Classification of Prosodic Events. PhD thesis,
Columbia University, 2009.

C. S. Information Structure and the Prosodic Structure of English. PhD thesis, Univer-
sity of Edinburgh, 2006.

A. Sluijter and V. Van Heuven. Spectral balance as an acoustic correlate of linguistic
stress. Journal of the Acoustical Society of America, 100(4):2471-2485, 1996.



[16] F. Tamburini and C. Caini. An automatic system for detecting prosodic prominence
in American English continuous speech. International Journal of Speech Technology,
8(1):33-44, 2005.

[17] A. Turk and L. White. Structural influences on accentual lengthening in English. Journal
of Phonetics, 27(2):171-206, 1999.

[18] K. Yoon. Imposing native speakers’ prosody on non-native speakers’ utterances: The
technique of cloning prosody. Journal of the Modern British € American Language €
Literature, 25(4):197-215, 2007.



