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ABSTRACT

Whisp ering is a common typ e of sp eech which is not often studied studied

with sp eech technology. Perceptual and physiological studies show us that

it is subtly di�erent from phonated sp eech, and is surprisingly able to carry

a tremendous amount of information. In this thesis we consider the ques-

tion: what makes whisp ering a go o d form of communication. We examine

the di�erences b etween normal phonated sp eech and whisp ered sp eech, and

gauge the e�cacy of state of the art sp eech recognition algorithms on rec-

ognizing whisp er. A metho d for building sp eech recognizers for whisp ered

sp eech using limited whisp er sp eech data is prop osed and evaluated.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Intro duction: The Trouble with Whisp ering

Human sp eech is a natural mo de of communication that is well studied but

p erhaps not well understo o d. At least, engineers have so far failed to apply

our understanding to practice - automatic sp eech recognition (ASR) tech-

niques fall far short of human p erformance. Simple changes in the recording

environment and in sp eaking style will deteriorate the p erformance of ex-

isting state of the art techniques. In this thesis we are concerned with one

simple but devastating (to p erformance), yet not often studied, deviation to

normal sp eech - whisp ering.

Several pressing problems p ersist with the study of whisp ered sp eech recog-

nition - the foremost of which is the lack of a large systematic, publicly

available corpus for study. This in turn presents an interesting problem -

can algorithms b e designed that will work with whisp ering, using a reason-

able amount of normal sp eech and a mininal amount of whisp ered sp eech for

training? How is whisp ered sp eech di�erent from normal sp eech, and how

do these di�erences manifest in the acoustics and a�ect the p erformance of

sp eech recognition? More fundamentally, how go o d is whisp ering itself as

a channel for conveying sp oken information, even b etween human sp eakers

and listeners?

All of these problems, while not necessarily resolved, are addressed by

the data and exp eriments in this thesis. Before we do so, it is imp ortant

to understand in greater detail, the nature of sp eech and whisp er as we

understand it to day.

1
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Figure 1.1: Comp onents in Sp eech Understanding (taken from [2])

1.2 Sp eech Communication

Sp eech is a primary mo de of human communication that emerged late in

human evolution - the facilities for the pro duction and p erception of com-

municative sp eech can b e thought of as having evolved from pre-existing

anatomy evolved for breathing [5] and eating. Although it is unclear if the

eating apparatus further co evolved as anatomical changes to p ermit sp eech

develop ed

1

, most de�nitely there is a multiplexing of several, non-sp eech re-

lated functions on the same physiological setup. The impact of this evolution

is tremendous, esp ecially in terms of the human articulatory apparatus; at

a �rst glance it app ears to lo ok nothing at all like an engineering system

designed expressedly for the sole purp ose of communication.

Though complex, the pro cess of communicating messages with sp oken lan-

guage may b e broken down into the stages. As shown in Figure 1.1, commu-

nication b egins with the formulation of the message, and go es through several

stages, propagating through the acoustic medium, and go es up the message

1

Comparative study of primate skulls [6] provides evidence that prop erties allowing

sp eech articulation, such as the lowering of the larynx and compaction of muscle structures

to the base of the skull thus increasing the mobility of the tongue, co-o ccurred and p erhaps

were a result of when man to ok an upright p osture. At the same time, lowering of the

larynx exp oses a greater danger of fo o d going into the breathing airways and could b e

seen as counterpro ductive to more e�cient eating [7].

2
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Engineering Concept Physiology Physical Medium Field of Linguistic Study Engineering Mo del

Transmitter Human sp eech apparatus Articulatory Phonetics Sp eech Synthesis

Channel acoustic waveform Acoustic Phonetics Sp eech Co ding

Receiver the ear, auditory nerve, Sp eech Perception Sp eech Recognition

auditory cortex

Table 1.1: Breaking down the Pro cess of Sp eech Communication

analysis chain, ending with message comprehension. Prior to actual articula-

tion of the message, we may have cognitive pro cesses that decide what words

to communicate in the �rst place, and after receiving the sounds and deco d-

ing them in the ear there are linguistic and cognitive pro cesses that p erform

actual understanding of the message, where semantics and pragmatics come

into play. However, if we are more concerned with what go es on close to

the acoustic medium itself, in engineering terms we are left with basically a

transmitter (articulatory apparatus), a medium over which the sound propa-

gates (channel), and and apparatus that hears and p erforms initial deco ding

of the incoming sp eech sounds (receiver). The corresp onding apparatus for

transmitting and receiving sp eech, the �elds of study asso ciated with them

and the machine technologies that have b een develop ed can b e broken down

in this manner as illustrated by Table 1.1.

The rest of this section will provide the reader with an understanding of key

ideas in the related sub-�elds in linguistics (phonetics) [4, 8], psychophysics

[9] and engineering (sp eech technology) [10], starting with the source of the

sp eech signal, examining in detail the recognition and identi�cation of sp eech,

and �nally at how sp eech sounds manifest in the acoustic waveform.

Just as it is sub optimal to design the transmitter of a communicative sys-

tem indep endently of the channel and the receiver, and preferable to consider

the limitations on the entire link at once [11], it would seem myopic to study

sp eech without an understanding of all three domains - articulatory (sp eech

pro duction), p erceptual (cognition), and acoustic (waveform and sp ectro-

gram) [8]. The linguistic units (e.g., phones, syllables and words) that make

up a sp oken language have manifestations in all three domains:

� in sp eech pro duction - they can b e describ ed in terms of the movement

and neural control of the sp eech articulators.

� in sp eech p erception - they can b e describ ed in terms of perceptual

correlates - the stimulus-resp onse in the auditory nerve and tonotopic

excitations within the auditory cortex.

3
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� in acoustic phonetics - they can b e describ ed in terms of acoustic cor-

relates - the lo cation and transition of the formants and sp ectral shap e

of noise-like regions.

Phonemes: Consonants and Vowels

The study of sp eech sounds is known as phonetics [12]. Despite the wide

variance and sheer numb er of languages available in the world to day, the basic

sounds of any language can b e categorized into p erceptually similar short

segments of sp eech. There are many phonological theories which concern this,

but the more p opular ones involve the phoneme . An unwavering de�nition

of phoneme itself is a p oint of contention even among linguists [13], but we

shall try to provide a useable de�nition here that we as sp eech technology

engineers can use.

� The phoneme is a readily identi�able unit of sp eech � usually it is

a minimally distinctive unit of sound in a language. They are also

related to the distribution of letter-sounds in alphab etic languages. To

the layman, the phoneme app ears to corresp ond to basic sp eech sounds

that make up a word (for instance /k ae sh/ in ARPAb et [14] or /k

æ S/ in IPA [15]). Although it need not b e a natural construct of all

languages, nor is it a necessary part of all phonological systems and

theories, it app ears that a phonemic inventory exists for all languages

[13].

� In English, phonemes can b e generally categorized as either vowels or

consonants, each of which have di�erent articulatory, acoustic and p er-

ceptual prop erties [16]. Consequently, they have acoustic and p ercep-

tual correlates � the identity of a phoneme can b e signaled by features

in the acoustic waveform (e.g. CV transitions), or by excitation of sp e-

ci�c regions in the auditory cortex (i.e. a tonotopic mapping). Some

phonologists [17] even go so far as to suggest a fourth correlate: a men-

tal representation of phoneme as it is to b e pro duced, although there

is no comp elling reason why this cannot b e the same as the p erceptual

representation of a phoneme.

� Vowels are pro duced with a relatively op en vo cal tract, and thus have a

resonant sound [4]. In contrast, consonants are pro duced with a narrow

4
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constriction, sometimes causing turbulence in the air�ow (fricatives);

in some cases there is a complete stoppage of the air�ow (stops).

� Phonemes string into words, usually in a consonant-vowel (CV) or

consonant-vowel-consonant (CVC) pattern. In languages, phonemes

may manifest di�erently (i.e. al lophones ) dep ending on their lo cation

in the word. (e.g. in English, /t/ is accompanied by a pu� of air � i.e.

aspirated � when it o ccurs at the start of words, but it is not aspirated

when it is at the end) [16].

� A sp eci�c language may have its own set of phonemes and allophones

unique to it. Similar sounding words can often b e distinguished by the

di�erence in just one phoneme, such pairs of words (e.g. bash /b æ S/ vs.

dash /d æ S/, di�er only in place of articulation of the �rst phoneme) are

called minimal pairs . Furthermore, the p ossible combinations of sounds

in a language tend to b e severely limited; for instance, in Mandarin,

words tend to b e C-V or C-V-C in nature, with the �nal consonant,

excepting �retro�ex �nals�, either an /n/ or /­/ [18]. Grammatically

allowed concatenations of phonemes within a language are governed by

its phonotactics [19].

� In actual sp eech, the movement of the articulators and the control of

the glottis are not strictly synchronized - while p erceptually we can eas-

ily identify whether a consonant follows a vowel or vice versa, within

the acoustic signal it is often hard to �nd a strict time b oundary sep-

arating a pair of contiguously articulated phonemes. Rapid movement

of the articulators in natural sp eech results in co-articulation - which

can b e thought of as a kind of inter-symb ol interference, manifesting as

di�erent acoustic observations for di�erent contexts preceding or fol-

lowing a vowel (and vice versa). Consequently, it is useful to consider

the characteristics of syllables rather than phones, as all languages are

syllabic, and the identity of CV sequences is largely manifest in the

�rst and second formant transition [20].

The study of how phoneme identity manifest in the acoustic waveform

or sp ectrogram (i.e. the acoustic correlates) is in the sub-�eld of acoustic

phonetics [21]. The sounds of the world's languages can b e organized by

their prop erties, as shown in the International Phonetic Asso ciation's (IPA)

5



Draft of Novemb er 17, 2010 at 13 : 35

Figure 1.2: Sounds of the World's Languages, (taken from Peter

Ladefoged's website [3])

chart in Figure 1.2. The chart shows how the identity of consonant and vowels

manifest in the articulatory domain: vowels are organized by the height and

p osition of the tongue; consonants are organized by how they are articulated

and where they form the smallest constriction. This chart is readily available

from Peter Ladefoged's website [3].

Distinctive Feature Theory

The phonemes in English may b e distinguished by their distinctive features

[22], these are binary prop erties or features which may either b e present or

absent during their pro duction. These features could b e arranged hierarchi-

cally, but more often they are thought of in terms of two main groups

6
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� the articulator-b ound features describ e presence or absence of p osition

and or movement of the sp eech articulators. They can b e further or-

ganized into three ma jor groups, dep ending on whether they refer to

movement of articulators in the oral cavity, movement in the pharyn-

geal cavity or muscle sti�ness in the larynx. These features include

� movement in oral region - (round, anterior, distributed, lateral,

high, low and back)

� movement in pharyngeal region - Nasal, advanced tongue ro ot,

constricted tongue ro ot, spread glottis and constricted glottis.

� surface sti�ness - (sti� vo cal folds, or slack vo cal folds)

� the articulator-free features describ e features or prop erties without re-

ferring to the sp eech articulators, and these tend to b e p erceptual in

nature. These include features such as [consonantal] , [vocalic] ,

[sonorant] , [strident] , and [continuant] .

A thorough de�nition of all of these features is b eyond the scop e of this

writing, and the reader is asked to refer to the excellent writings of Chomsky

and Halle [22], or mo dern textb o oks on phonetics [12]. However, it must b e

noted that all of the features, like phonemes themselves can b e thought of

in terms of their acoustic and p erceptual correlates. The landmark can b e

thought of as sub-feature of a phoneme, in the sense that they are linguistic

units that are part of a phone, in a similar sense that phonemes are part of a

syllable or a word, with the exception that the part-of relationship is not b e

largely temp oral in nature. Alternatively, we can also think of the phoneme

having a HAS-A relationship with the landmark. As these are linguistic

units, they can manifest in all three domains (articulatory, p erceptual and

acoustic) in di�erent ways. In particular, the acoustic landmarks used in

sp eech recognition [23], thought of by researchers as a p erceptual correlate of

these features. We next lo ok at how these phonemes are pro duced, p erceived

and physically manifest in acoustics.

1.2.1 Sp eech Pro duction

Sp eech pro duction involves many parts of the human upp er b o dy. Stevens

[4] divides these into three parts: the system b elow the larynx; the larynx
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and the surrounding structures; and the structures and airways ab ove the

larynx. This is illustrated with Figure 1.3(a). The system b elow the larynx

consists of the respiratory structures: the ab domen, lungs and trachea. The

lungs have a fractal like quality to them � starting from the trachea these

branch out into smaller bronchi, eventually branching into sac-like alveoli

where gaseous exchange takes place during breathing. It is here that the

pro cess of pro ducing sp eech b egins, as the respiratory system itself serves as

an energy source for phonated sp eech [8]. Similar to the expiration phase of

breathing, the diaphragm moves upwards and compresses air out of the lungs,

but the thoracic muscles and diaphragm contract in a controlled manner to

maintain a constant rate of decrease in lung volume and nearly constant

subglottal pressure [24]. This creates an air�ow which passes through the

natural constriction formed by the laryngeal structures.

Figure 1.3 shows a close-up diagram of the larynx and vo cal tract. Air-

�ow passes through vocal cords at the larynx , into the cavities formed by the

wall of the mouth ( oral cavity ) and breathing passage via the nose ( nasal

cavity ) [8]. The levator veli palatini muscle attaches to the soft palate �

its contraction raises the soft palate and seals o� the nasal passage from

the oral cavity; lowering the soft palate allows air-�ow through the nasal

passage giving rise to a nasal sound. The vocal tract , consisting of the oral

and nasal cavities, acts somewhat like a resonant acoustic waveguide with a

closed b oundary near the vocal cords at glottis , and an op en b oundary at the

lips. The resonant sound radiates outward from the lips as a pressure �eld

[10], where it is picked up and p erceived by human listeners as sp eech.

Normally sp oken sp eech is phonated � this is due to action by the vo cal

folds. They situate in the middle of the larynx, as shown in Figure 1.2.1,

and control air-�ow into the vo cal tract. A top-down view of the larynx

showing the vo cal folds and glottal con�guration is shown in Figure 1.2.1.

This is the view that is obtained through strob oscopy or laryngeoscopy. The

ab duction and adduction of the vo cal folds, and consequently op ening and

closing of the glottis is controlled by the vo calis muscle, crio co-arytenoid and

inter-arytenoid muscles. The crico-arytenoid muscles can b e held tense or

lax, resp ectively op ening or closing the air passage b etween the lungs and

trachea to them mouth. The shap e of the glottal op ening or so called �glottal

con�guration� can take several forms, dep ending on which part of the folds

are adducted (pushed together). During phonation, the vo calis muscle causes

8
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the vo cal folds to adduct, air�ow through them causes rhythmic vibration.

This rhythmic motion alternately cuts o� and p ermits air�ow, e�ectively

releasing air into the airways ab ove the larynx in short pulses. The vibration

typically happ ens at around 100 Hz for the adult male sp eaker and 200 Hz for

the adult female sp eaker. It is this vibration that gives sp eech its quality of

pitch. Slowly-varying rates of vo cal fold vibration give rise to pitch contours,

which in turn give rise to intonation patterns in normally voiced sentences.

Phonation at the glottis also breaks up the entire acoustic system at the

glottis, e�ectively decoupling the subglottal and supraglottal mechanisms �

in most acoustic treatments the glottis and other structures b elow including

the lung and trachea is treated as a pitched acoustic source that excites the

oral cavity.

The oral cavity itself acts like an acoustic waveguide that varies in cross-

sectional area along its length [25, 26]. Its shap e is determined by the move-

ment of the jaw and tongue. The p osition of the tongue tip separates the

cavity into a front and back p ortion � this leads to a simpli�cation with

many treatments of the oral cavity which mo del it as a two-tub e acoustic

system. Such a system has natural resonances, formants , that are present

in the resulting sound. The lowering of the velum can allow an additional

route for air�ow to escap e out of the oral cavity via the nasal passage, this

generally gives rise to the voice quality we know as nasality.

1.2.2 The Acoustic Theory for Sp eech Pro duction

Engineers [27, 10, 4] have long mo deled the pro duction of sp eech using a

Source-Filter Model . The acoustic theory considers the b o dy parts involved in

sp eech pro duction `b efore� the glottis (inclusive of the vibrating folds, trachea

and lungs), as a source of excitation that drives a time-varying acoustic tub e

that acts as a �lter. The shap e of this tub e is determined by the placement

and p osition of the speech articulators .

Vowel Pro duction and Two Tub e Mo del

Vowels are resonant sounds pro duced with a relatively op en con�guration

of the vo cal tract with a continuous air�ow. Under such conditions, air�ow

is non-turbulent and laminar: that is air-�ow is largely �parallel� along the

9
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(a) Overview of Lungs, Larynx and Vo cal

Tract (from Stevens [4])

(b) Close-up View of Vo cal Tract (from

Stevens [4])

Figure 1.3: The Human Sp eech Apparatus, (taken from Language Files [1])

(a) Lateral View of the Larynx (from

Stevens [4])

(b) Illustration of the Vo cal Folds, as p os-

sibly viewed from the top using a laryngeo-

scop e, (from Wikip edia Commons)

Figure 1.4: The Vo cal Fold and Larynx.
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vo cal tract [28]. In the absence of nasalization, the acoustics of the vo cal tract

are very accurately mo deled by treating it as a single tub e of varying girth

along its length. The area function A(x; t ) is de�ned as the cross-sectional

area at time t along the vo cal tract, at the p osition x centimeters away from

the glottis. The acoustics of this system can b e mo deled by the Webster

Equation [29],

@2p
@x2

+
1

A(x; t )
@p
@x

@A
@x

=
1
c2

@2p
@t2

; (1.1)

where p(x; t ) is the pressure along the vo cal tract. The resonant frequencies of

the tub e can b e solved by discretizing the ab ove partial di�erential equation

and applying a gradient descent search technique. These resonances can b e

clearly observed within the sp eech sp ectrogram - they are called the formants

- and numb ered in ascending order from the lowest frequency formant to the

highest one.

In the linguistic source-�lter theory, this mo del can b e further simpli�ed

by simply considering just the p oint of the narrowest constriction; this is

typically determined by the shap e of the tongue which sets the lo cation of

the narrowest constriction, forming this with the tongue blade in the front

vowels, and with the b o dy for the back [21]. This constriction divides the

oral cavity into a front (nearer the lips) and a back cavity, and the acous-

tics may b e crudely mo deled as two conjoined cylindrical tub es, each tub e

approximating acoustics of each cavity [4]. The analytic solution to such an

acoustic mo del gives natural resonances that mimic very closely what is seen

in measurements of actual vowels. The height of the tongue determines the

so called height of the vowel pro duced, this shows up in the sp eech signal as

the frequency of the �rst formant F1 - the lowest natural resonance of the

vo cal tract. The lo cation of the constriction determines the frontness or the

backness of the vowel, resonances in the front cavity are asso ciated with the

second formant F2 .

Pro duction of Consonants

Consonants are sp eech sounds articulated with complete or partial closure

of the vo cal tract. The most common taxonomy of consonants in English is

illustrated by Table 1.2 [1]. They are arranged from left to right by their place

of articulation - the p oint of the narrowest constriction or greatest turbulence
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in the air�ow within the vo cal tract during their pro duction. Going from the

front of the mouth to the back of the mouth these places of articulation are

� labial - at the lips.

� labio dental - the constriction involving the upp er teeth and the lower

lip

� interdental - with tip of the tongue placed b etween the teeth.

� alveolar - with tongue tip near the alveolar ridge

� palatal - with tongue blade near the hard palate

� retro�ex - with tongue tip near the hard palate

� velar - with tongue b o dy near the velum (soft palate)

� pharyngeal - at the pharynx.

� glottal - near the glottis.

The consonants are categorized vertically in the consonant chart, according

to their manner of articulation - they way in which they are pro duced. These

categories include

� stops/plosives - in which there is a temp orary but complete obstruction

in the vo cal tract, during which air�ow continues to build up pressure

at the back of the constriction. The plosives are characterized by four

stages of pro duction [16]

� closing phase - during which the movement of the articulators

bring ab out the complete stop of the air�ow through the vo cal

tract.

� compression phase - during which a complete stop of the air�ow

o ccurs. During this time, there is no output in the acoustic wave-

form, and a build up of air pressure happ ens b ehind the constric-

tion.

� release phase - during which the articulators move to allow the

compressed air to escap e � this manifests as a sudden pu� or air

or a sudden wide-sp ectrum energy burst in the acoustic sp ectrum
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2 milliseconds in length. Frication also o ccurs as the articulators

move op en, and lasts for around 5 milliseconds in length.

� p ost release phase - during which there is aspiration for some of

the plosives (esp ecially word initial), which o ccurs b efore the onset

of the vowel formants.

� fricatives - in which there is incomplete closure but the constriction

is narrow enough to cause turbulence. They manifest in the acoustic

sp ectrum as very wide band (nearly white) noise, strong enough to

mask out the formants.

� a�ricates - which are each comp osed of a rapid co ordinated sequence of

a stop and a fricative. Similar to the stop there is closure and pressure

buildup corresp onding to complete stoppage of the air�ow, but they

involve frication and turbulence at the p oint of release. In IPA they

are transcrib ed with the stop and the fricative they corresp ond to up on

release.

� liquids - which in English are the consonants /r/ and /l/, involve a

complete or near complete midline closure with side branches.

� glides/approximants - which are consonants that are wide enough to

almost resemble vowels in their quality.

As is typically presented, each column of the consonant chart has a pair of

phonemes; the column is sub divided into the unvoiced consonant on the left,

and the voiced counterpart on the right. The main distinction b etween voiced

and unvoiced consonants is supp osedly the presence or absence of vo cal cord

vibration. In reality, consonants in a syllable are rarely articulated without a

following vowel. Since all vowels are voiced in normal sp eech, the distinction

thus b ecomes directly dep endent on when the onset of voicing o ccurs (i.e.

voice onset time ).

The Source Filter Mo del and The Linear Predictive Filter

The source-�lter mo del of sp eech pro duction is similarly based on the idea

of decomp osing the mechanics of sp eech pro duction into a source and a �lter
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Stop/Plosive /p/ /b/ /t/ /d/ /k/ /g/ / P/

(P) (B) (T) (D) (K) (G)

Fricative /f/ /v/ / T/ /ð/ /s/ /z/ / S/ / Z/ /h/

(F) (V) (TH) (DH) (S) (Z) (SH) (ZH) (HH)

A�ricate /t S/ /d Z/

(CH) (JH)

Nasal /m/ /n/ /­/

(M) (N) (NG)

Lateral Liquid /l/

(L)

Retro�ex Liquid /r/

(R)

Glide/Approximant /w/ /j/

(W) (J)

Table 1.2: Consonants in English. Adapted from [1]

The symb ols we use here are IPA, and the entries in parentheses are ARPAb et representations that are used in our machine

pronunciation dictionaries. Entries without parentheses are identical in b oth representations.
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[8]; furthermore, as engineering mo del, it can b e used to arti�cially synthesize

sp eech-like sounds [30].

The e�ect of the vo cal folds on the airstream and the con�guration of the

oral cavity, are resp ectively broken down and mo deled as an energy excitation

source driving an auto-regressive linear �lter (a.k.a. Linear Predictive Filter)

[31, 32]. A fragment of sp eech can b e voiced (with pitch) or unvoiced. When

there is pitch, the vo cal folds vibrate, thereby cutting o� the airstream at

regular intervals: this e�ect can b e mo deled at the source as a series of

impulse trains driving the linear �lter (i.e. glottal excitation) that represent

an excitation signal fed into the resonating oral cavity [8]. When there is no

voicing, air from the lungs �ows through unimp eded, and it is assumed that

this can b e mo deled as white noise driving the �lter.

Recall that oral cavity itself can b e mo deled as a tub e with a slowly-varying

cross sectional area across its length; the solution of the resonant frequencies

using a discretization of the Webster equation [10], give a very go o d approx-

imation to the formants in the signal. It turns out, that an auto-regressive

linear �lter (i.e. a fed-back FIR Filter) is su�cient to capture the e�ect of

this simpli�ed mo del of the oral cavity, and indeed the mathematics for ob-

taining the co e�cients to such a �lter (a.k.a. Linear Predictive Co e�cients)

are directly related to the solution of the discretized Webster equation [10].

WHITE
NOISE

OTHER
SOURCES

TRAIN
IMPULSE

... (Linear Predictive)

TIME-VARYING 
FILTER

SPEECH

CONTROL 
SYSTEM

MULTIPLEXOR FILTER COEFFICENTS

(a) The Source Filter Mo del of Sp eech Pro duc-

tion, mo di�ed from [10]

Figure 1.5: The Human Sp eech Apparatus and an Engineering Mo del of

Sp eech Pro duction
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1.2.3 Perception

Sp eech p erception is the study of how sp eech sounds are interpreted and

recognized by the human brain. This pro cess may b e broken down into

several steps

� The mechanical transduction of the acoustic waveform by the ear, into

nervous signals carried by the auditory nerve bundle.

� The auditory nerve carries the nervous signal representing the heard

sounds to the auditory cortex, where sp eci�c acoustical events may

excite sp eci�c regions in the cortex in a tonotopical mapping.

� Presumably the sounds p erceived by the auditory cortex may b e group ed

and streamed [33]. These events might b e sent further upstream to pro-

cessing centers for language, where the sp eech is eventually understo o d.

1.2.4 Simpli�ed Co chlear Mechanics

Figure 1.7 shows a picture of the ear, taken from Stevens [4]. As sound

impinges on the outer ear, it is �ltered and acoustically ampli�ed. The vi-

brational sound excites the eardrum in the middle ear � this mechanical force

is ampli�ed through a level-like action with the incus, fo cusing the forces on

the stap es , the acoustic energy is transducted through oval window into a

co chlear duct (scala vestibuli) [34]. The co chlea itself is a structure resem-

bling a snail's shell. Internally, it resembles an acoustic waveguide, separated

by a thin membrane (the Basilar membrane). As illustrated in Figure 1.6,

the acoustics of the co chlear can b e mo deled by an �uncurled� version of it,

that is by a cylindrical tap ering acoustic tub e, divided along its length by

the Basilar membrane. The stap es hit the oval window, sending a travel-

ing pressure wave down the �top� section of the tub e, where it increases in

amplitude until it reaches a critical p osition on the basilar membrane, after

which it is rapidly attenuated [35]. The main e�ect of these intricate acous-

tics, app ears to b e to cause sp eci�c sections of the Basilar membrane to b e

resp onsive to sp eci�c frequencies. This e�ect app ears to b e consistent across

several sp ecies; the p osition along the Basilar membrane p osition with the

largest magnitude of mechanical excitation for a given frequency can b e mo d-
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Figure 1.6: Mo del of the Basilar Membrane

(taken from [37]). Here the parts are as lab eled: (a) - Round window , (b) -

Oval window connected to the stap es in the middle ear, (c) - Scala

vestibuli, (d) - Scala Tympani, (e) Basilar membrane, (f ) - helicotrema

(apical end). (taken from [4])

eled accurately using the Greenwo o d function [36] - so long as appropriate

constants for the given sp ecies is used.

The transduction of mechanical energy to electrical nervous signals is ac-

complished by the inner hair cells [38, 39]. These cells are densely packed

along the Basilar membrane and are connected to a nerve in the auditory

nerve bundle. Increased mechanical excitation of the stereocilia on these

cells eventually result in increased �ring rate of the corresp onding nerve.

The cells themselves have a highly selective frequency resp onse dep ending on

their p osition, combined with the natural frequency selectivity of the Basilar

membrane, gives extremely go o d time-frequency resolution of the signal.

The transducted signal is carried by the auditory nerve from the ear to the

auditory cortex, and go es through several stages of pro cessing as it progresses

through the co chlear nucleus, sup erior olive, inferior collicuus and medial

geniculate b o dy [4]. Within the auditory nerve, there app ears to b e some

sophisticated compression of the electrical signal. For instance, the �ring

rates of auditory nerve have b een observed to dynamically adapt to the sound

source - when presented with a continuous pure tone stimulus the �ring rate

is high immediately after the onset of the tone, but this quickly suppressed

after the initial tone [40].

Finally, the auditory cortex combines information from b oth ears and p er-

ceives elementary sounds. Some researchers b elieve that a wide range of

acoustic events have a tonotopic mapping in the auditory cortex [41, 42, 43].
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Figure 1.7: Cutaway Section of the Ear (taken from Stevens [4])

Figure 1.8: Intermediate Pro cessing leading up to the Auditory Cortex

(taken from Stevens. [4])
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Interesting Prop erties of the Perceptual System

The auditory and p erceptual system exhibits some interesting hysteretic fea-

tures and idiosyncrasies. Some interesting ones include

� Grouping and streaming e�ects . Exp eriments in [33] suggest the ex-

istence of streaming and grouping e�ects. Psychological exp eriments

suggest that humans are capable of b oth grouping - that is identifying

disparate regions of energy in the sp ectrum as b elonging to one acoustic

source or event, and streaming - that is to temp orally chaining together

disparate regions of energy as the pro duct of a unitary physical source.

These phenomena go a long way to explaining some everyday psycho-

logical e�ects, such as the Co cktail Party e�ect [44] - the ability of a

human to �tune-in� to one sp eci�c sp eaker amid multitudes of talking

p eople.

� McGurk e�ect . The p erception of consonants app ear to b e a�ected

by cues other than those present in the acoustic source. The e�ect

is demonstrated by the following exp eriment - a listener is presented

with the audio recording of a bilabial CV syllable (say /ba/), and it is

p erceived as so. However, when the listener is simultaneously presented

with a visual of the velar consonant (/ga/), the resulting consonant

is p erceived as somewhere in-b etween (/da/) [45]. The e�ect can b e

explained in part by the cognitive ability of the brain to extract and

predict the acoustic signal from other correlated sources. It is not

completely clear how much the in�uence of non-audio sources extends.

In particular it is not certain if whisp ered sp eech b eing p ossibly harder

to p erceive, might actually dep end more heavily on non-acoustic cues.

� Categorical Perception . The p erception of sp eech sounds tends to fall

into discrete categories which app ear to corresp ond with the native

language of the sp eaker [46]. Exp eriments with synthesized sp eech

mo difying the formant transitions to approximate intermediate transi-

tions b etween /b/, /d/ and /g/ suggest that there is usually a strict

b oundary, whereup on the sound will suddenly b e p erceived to b elong

to the other category. The lo cation of this b oundary exhibits hystere-

sis, its p osition will b e di�erent dep ending on whether the sound was

changing from /ba/ to /pa/ or vice versa.
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� Perceptual Magnet E�ect [47]. There is some evidence that when lis-

tening to sp eech sounds, it b ecomes more di�cult to tell the di�erence

b etween two sounds when they are similar to sp eech sounds of a lan-

guage. Just as we can plot an acoustic space for vowels by considering

the �rst formant on one axis and the second formant for another axis,

we can similarly consider a �p erceptual� space based on psychoacoustic

exp eriments. The p erceptual magnet e�ect seems to �warp� the p er-

ceptual space, so that discriminating sounds is easier when they are

not anywhere close to phonemes sounds. The e�ect has b een shown to

b e more pronounced for consonants as opp osed to vowels.

At present, it is not clear at all how much of the intricacy of the human

ear and the complexity of the auditory cortex needs to b e emulated for ac-

curate machine recognition. It is not clear if the level of signal detection

accomplished by the human ear needs to b e achieved by signal pro cessing in

machine recognition; nor is it clear that the psychoacoustic e�ects in sp eech

p erception have to b e p erfectly emulated by sp eech recognizers. It is well

known however, that what we have at present is insu�cient, judging by the

accuracy and robustness of state of the art systems compared with human

recognition [48]. However, it is imp ortant to keep such details in mind since

sp eech itself b elongs to a human phenomenon, and it should b e the goal of

research with machines to recognize sp eech in its �naturally-o ccurring� condi-

tions. Thus in examining what can b e done with whisp er, we hop e that this

will contribute a small piece to solving the whole puzzle of machine sp eech

recognition.

1.2.5 Acoustics

Sp eech manifests as a pressure wave that propagates through the air. Its

study is facilitated by microphones. These measure the variations in air

pressure and output a voltage signal that varies prop ortionately with the

pressure variation. Plotting this signal against time gives us an oscillogram

which we can study. The acoustic waveform gives us some information ab out

the sp eech sound, large amplitudes correlate with higher volume, and sudden

increase in amplitude corresp onds with initial bursts of sp eech. The decaying

amplitude indicates a general decrease in volume as we progress naturally
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through the utterance.

Another representation of sp eech is in terms of the frequency comp onents

present. We start with the Short Time Fourier Transform of a signal f (t)

computed as

F (!; t ) =
Z � t

� t
f (t + � )w(� )e� j!� d�; (1.2)

where ! is frequency in Hertz, and w(t) is a suitable windowing function.

Plotting kF (!; t )k2
with ! on the vertical scale and t on the horizontal scale

gives us a sp ectrogram � this displays the frequency content of sp eech as it

progresses through time. The sp ectrogram is able to tell us much more infor-

mation ab out the sp eech signal. It has an interesting �Heisenb erg� prop erty,

in that it cannot simultaneously resolve b oth frequency and time to high

degree of accuracy, but instead can do one or the other [49]. The length of

the integration window � t essentially controls this � a longer window is used

with narrow-band sp ectrograms and these give b etter frequency resolution

at the exp ense of time. The converse is true for wide-band sp ectrograms.

Examples of the acoustic waveforms and narrow-band sp ectrograms are

shown in Figure 1.9. The pair of waveforms shown are recordings of the same

adult male sp eaker sp eaking and whisp ering �Jane may earn more money by

working hard.� Much information can b e gleaned from the sp ectrogram for

normal sp eech. The resonances of the oral cavity now show up as dark,

high energy bands (formants) during vo calic parts of the sp eech. Plosives

show up as sudden vertical bands of energy, indicating a broad sp ectrum

burst of energy. Many other acoustic prop erties of phonemes manifest in the

sp ectrogram, allowing us to �nd and segment phonetic b oundaries and also

identify them. In fact in many cases, a trained practitioner can deduce the

phonemic identity of short segments and �hear� the utterance by examining

its sp ectrogram [50]. The whisp ered versions on the other hand lo ok markedly

di�erent from the phonated ones. The next chapter will go into the di�erences

in detail.

1.3 Organization of the Thesis

We have outlined the basics of sp eech communication in this chapter � it

is up on this b ed of knowledge that we pro ceed to study whisp ered sp eech.
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(a) Normal Utterance

(b) Whisp ered Utterance

Figure 1.9: The acoustic waveform and narrowband sp ectrogram for b oth

normal and whisp ered sp eech; b oth recordings were of the same adult male

sp eaker.
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In this thesis we are concerned primarily with soft whisp er � other typ es of

whisp er such as high e�ort whisp er and stage whisp er have di�erent charac-

teristics and may need to b e studied separately. Sp eci�c di�erences b etween

whisp ered and unwhisp ered sp eech will b e highlighted in Chapter 2.

We intro duce two new whisp ered sp eech corp ora suitable for the study of

sp eech recognition. The two corp ora are the whisp ered Mo di�ed Rhyme Test

(wMRT) corpus designed for use in intelligibility studies, and the whisp ered

TIMIT (wTIMIT) corpus designed for the study and construction of large

vo cabulary sp eech recognizers. Chapter 4 describ es these two corp ora in

detail and provides some acoustical analyses.

In Chapter 5, we consider the limit of whisp ering as a communication

channel. A p erceptual exp eriment and its analogous sp eech recognition ex-

p eriment, based o� the wMRT corpus was p erformed. We provide an analysis

of errors made by two cognitive systems, human and machine, as well as an

accuracy rate for transmission of voicing in whisp er at word level contexts.

In Chapter 6, we collate results from sp eech recognition exp eriments. The

p erformance of sp eech recognizers at recognizing di�erent typ es of sp eech,

whisp ered in di�erent accents are considered. Standard algorithms for adapt-

ing the acoustic mo dels, from unwhisp ered sp eech acoustic mo dels for whis-

p ered sp eech and vice versa, are evaluated. We consider the problem of

building sp eech recognizers for whisp ered sp eech using large amounts of un-

whisp ered sp eech data and limited amounts of whisp ered data, and prop ose

and evaluate a new metho d for doing so. Finally, our conclusions are pre-

sented in Chapter 7, where implications and suggestions for future work are

discussed.
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CHAPTER 2

WHISPERED SPEECH

2.1 Pro duction of Whisp ered Sp eech

The physiological pro duction of whisp ered sp eech di�ers from normal sp eech

primarily in the lack of phonation: vo cal folds do not vibrate and the glottal

ap erture remains op en [51]. Endoscopy studies allow us to study whisp er

where it di�ers the most � at its source � by giving us top-down images of the

larynx during whisp ering. With whisp er the larynx height is raised through

actions of the stylohoid and digastric muscles [52], e�ectively shortening the

vo cal tract. This e�ect is also observed as a lack of phonological contrast

b etween voiced and voiceless consonants.

2.1.1 Whisp er Typ e and Glottal Con�guration

Many researchers [53, 54] make a distinction b etween high e�ort and low

e�ort whisp ering. High e�ort whisp ering, sometimes known as �forced whis-

p er� or �stage whisp er�, can carry farther than low e�ort or soft whisp er.

Both typ es have di�erent pro duction parameters and acoustics. Sundb erg

[55] go es so far as to identify four di�erent typ es of whisp ering, characterized

by di�erent air�ow and glottal con�guration. However, as he did not conduct

p erceptual tests, it is not clear if these can b e really distinguished in hearing.

Monoson [54] used high sp eed laryngeal photography in conjunction with

electromyography of two ab dominal muscles and one strap muscle of the neck,

to study di�erences b etween four registers of sp eech: normally phonated,

soft whisp er, forced whisp er and breathy voice. Their study made recordings

of the vowel /a/ from 5 sub jects. Glottal ap ertures found during whisp er

include the inverted-Y and the inverted-U shap es, along with a b ow-shap ed

con�guration.
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Solomon et al [53] observed glottal con�gurations of 7 women and 3 men

during low-e�ort and high-e�ort whisp er. They classi�ed vo cal fold con�g-

urations into 3 sizes (small, medium and large) based on the shap e of the

glottal ap erture and found two predominant shap es (to ed-in, resembling an

inverted-Y and straight, resembling an inverted-U) used in the pro duction

of whisp er. However, glottal con�guration was inconsistent where it comes

to whisp er e�ort. This suggests that the pro duction of whisp ered sp eech

is motivated by the necessity to achieve salient ob jectives in the acoustics

rather than by a need for consistent physiological pro duction.

Similar conclusions can also b e derived from Mills [52], who found that in

whisp er, voiced consonants are pro duced with a glottal con�guration statis-

tically indistinguishable from unvoiced consonants. He studied the glottal

con�gurations of 10 sp eakers using a video endoscop e. He also develop ed

measures to correct the wide-angle distortion in his endoscop e, and used the

cuneiform tub ercle as a landmark, estimating its size in pixels in order to

gauge the camera to larynx distance, which was indirectly a�ected by lar-

ynx height. His approach allowed him to quantitatively compare the glottal

ap erture sizes in normal and whisp ered sp eech despite having di�erent lar-

ynx heights. His results found that the ap erture size di�erences b etween

voiced and voiceless obstruents in normal sp eech were also observed in whis-

p ered sp eech. However, glottal ap ertures in phonated and whisp ered vowels

were di�erent. His work suggests that some laryngeal gestures that distin-

guish voiced and voiceless obstruents are preserved during whisp ering � he

suggests that this could b e a source of discriminability in the acoustics.

Work in Arabic [56] seems to give con�icting views regarding laryngeal ges-

tures for phonological voicing in whisp er. Zeroual et al used video endoscopy

to observe the larynx duing pro ductions of Moro ccan Arabic non-words /i

C i C/, where C was one of the consonants /t, d, T, D, s, z, X, K, H/, and

/T,D/ are uvularized versions of /t,d/. They concluded that the glottal con-

�guration during whisp er was distinct from normal sp eech and should b e

considered as �whisp ered�. The also observe that in whisp ered segments, the

base of the epiglottis, aryepiglottic folds and the arytenoids tend to compress

together. As opp osed to Mills, they concluded that there were no clear la-

ryngeal articulatory di�erences b etween consonants with contrastive voicing.
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2.1.2 Transglottal Air�ow and Interoral Pressure

Several di�erent studies rep ort a higher transglottal air�ow and pressure

during whisp er. Monoson [54] measured air�ow during four di�erent typ es

of sp eech and found much greater air�ow during whisp er than in normally

phonated sp eech. Air�ow was also found mostly to b e greater than soft

whisp er than in forced whisp er, in some cases double the �ow was found.

These di�erences in pro duction manifest in the acoustics � at higher air�ow

the Reynolds numb er of the �ow exceeds the nominal value and air�ow is

no longer laminar but instead turbulent [28, 4]. This makes the acoustic

excitation at the glottis to resemble a turbulent sort of noise.

Klich measured intraoral pressure during the pro duction of the bilabial

stops under two vowel contexts /a,u/, for b oth phonated and whisp ered

sp eech at two di�erent volume levels [57]. Conversation level sp eech was

pro duced by requesting the sp eakers to imagine �talking to someb o dy 3 feet

away,� and twice-conversational level was presumably double the distance.

He found that for phonated sp eech, /p/ and /b/ have di�erent intraoral pres-

sure, but in whisp ered sp eech they were the same. The pressure di�erential

b etween intraoral and subglottal pressure gives rise to the transglottal air-

�ow, and the two pressures dep end on the acoustic imp edence of the glottal

constriction. Whisp er having a relatively op en con�guration is assumed to

have roughly similar subglottal and intraoral pressures, higher transglottal

air�ow comes from having the lowered glottal imp edence.

There are also subtle di�erences in b oth the motor control and breathing

during whisp ering. Bonnet et al [58] made electromyograph measurements of

the activity of three muscles: the orbis oris inferior surrounding the lips, the

anterior digastric on the underside of the jaw, and the levator veli palatini

which elevates the soft palate. By aligning these signals with the start of

the acoustic waveform, they found that during whisp ering sp eakers tended

to have longer anticipatory signalling than in phonated sp eech.

2.1.3 Breath Control in Whisp er

Breath control di�ers from normal to whisp ered sp eech. In [59], the respi-

ratory function during whisp ering was investigated for 10 healthy sub jects.

Sub jects were made to whisp er and sp eak a single paragraph. Syllables were
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group ed together for each draw of breath, and measurements were made for

the various lung capacities during whisp ering and sp eaking. From these,

the amount of air exp ended during whisp ering was calculated and compared

with normal sp eech. They found that each draw of breath had roughly the

same amount of air during b oth whisp er and normal sp eech. They also found

that whisp ered sp eech pro duction was slower; more air was exp ended; fewer

syllables could b e sp oken. These �ndings are corrob orated by Schwartz [60],

who found that more air was used during whisp ering. He also suggested that

in order to conserve air, gestures which conserve air�ow such as during stop

closures are prolonged leading to an overall lengthing of whisp er syllables

[61].

2.1.4 Articulator Movement in Whisp er

Higashikawa investigated the di�erences b etween lip movements for bilabial

plosives during phonated and whisp ered sp eech pro duction [62]. Sp eakers

were asked to pro duce CV syllables with /p/ and /b/ in them set within in a

sentence context. To track lip movements, re�ective markers were placed on

the lips of the 7 sub jects and these were videotap ed and later automatically

tracked. The authors found signi�cantly faster lip op ening when whisp ering

/b/ compared with whisp ering /p/ or normally sp eaking /b/. This work

is suggestive in that one might now susp ect that hyp er-articulation exists

for the other articulators of sp eech � however b eyond the literature listed

I am not aware of any evidence that di�erent or exaggerated articulatory

movements o ccur during whisp ering.

2.2 Acoustics of Whisp ered Sp eech

Acoustically, whisp er is very di�erent from non-whisp ered sp eech. We once

again refer to Figure 1.9 for comparisons. A cursory examination of the

waveforms show that the whisp ered version lo oks nothing at all like the

normal sp eech waveform. The sudden p eaks in the waveform corresp ond

to plosive bursts, which have a tendency b e much stronger (relatively) in

whisp ered sp eech. The sp ectrograms indicate no voicing is present at all

in the whisp ered sp eech, as there are no visible horizontal striations that
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accompany voicing. Although it is faint, the prop erties of increased sp ectral

tilt observed by researchers in sp eech p erception seem to b e present. The

obvious remaining indicators of the message for whisp ered sp eech app ear to

b e largely the formant energies.

2.2.1 Reduced Sp ectral Tilt in Whisp er

Without glottal fold vibration, voicing information app ears to b e lost. There

is no viable concept of voice onset time, which is otherwise typically cited in

the literature to b e a feature that distinguishes b etween contrastive voiced

and voiceless phonemes. The glottal source b ehaves roughly like a noise

source, and the sp ectral quality of most phonemes is changed. A general

observation is that whisp ered sp eech has a lower, but �atter p ower sp ectral

density (i.e. lesser sp ectral tilt) compared with phonated sp eech [63].

2.2.2 Shift in Formant Frequencies in Whisp er

Many studies have also found a change in frequency of the formants when

whisp ering. Kallail [64] recorded isolated phonated and whisp ered vow-

els /i,u,æ,a, 2/ from 15 male adult sp eakers. Sp ectrographic measurements

showed systematic increase in the �rst three formants. He also found that F1

was mo di�ed far more than F2 or F3 � this was attributed to the change in

glottal vibration e�ectively shortening the overall length of the vo cal tract,

thus substantially mo difying F1. Kallail assumed that the p osition of the

tongue tip remained unchanged during whisp er, and thus F2 which tends to

b e asso ciate with resonances due to the front oral cavity, remain less changed.

Further results obtained by Kallail for English [65], along with those obtained

by Slob o dan for Serbian [66, 67], and Itoh for Japanese [68] tend to b e similar.

Slob o dan's measurements of the formant frequencies [67] for the vowels

/i,e,a,o,u/ for 5 male and 5 female sp eakers of Serbian, found a rise in F1

in all vowels except /u/; a rise in F2 for all except /u/, and /e/ for males;

relatively unsystematic changes in F3 and F4. One drawback of his data

is that mean values for the formant lo cations were taken, instead of p er-

sp eaker di�erence which would get rid of variability due to sp eaker, was not

provided. He found that the formant bandwidths in whisp ered sp eech were
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systematically larger than in phonated sp eech.

Itoh et al [68] recorded whisp ered and phonated sp eech from 69 male and

49 female sp eakers. Sp eakers read from a collection of 60 sentences, 50 of

which were phonetically balanced for Japanese. Measurement of the formant

frequencies showed a general trend to increase formant frequency for the lower

frequency formants (i.e. F1 and F2), but they do not make any observation

on the higher frequency formants.

2.2.3 Intensity of Whisp er

Whisp er tends to b e soft; signals captured with conventional microphones

have a low signal to noise ratio. Furthermore, since whisp ered sp eech is quite

similar to sp ectrally shap ed noise this hamp ers algorithms which attempt to

denoise or improve SNR. Despite all of this, the intelligibility of whisp ered

sp eech do es not app ear to fall far b elow that of normally sp oken sp eech [69].

Furthermore, there is even surprising evidence that certain information (e.g

phonemic voicing distinction, or emotion [70]) not exp ected to b e conveyed

well, actually is.

2.3 Perception of Whisp ered Sp eech

There have b een a numb er of studies involving the p erception of whisp er.

Since voicing is absent, acoustic pitch is non-existent: one do es not exp ect

pitch and pitch-related information to b e conveyed. However, there is much

evidence from literature to suggest the contrary.

2.3.1 Auditory Nerve Representation of Whisp er

How the auditory system represents whisp ered sp eech has also b een an ob-

ject of research. Evidence from Stevens and Wickesb erg [71] suggest that

voicing distinction is made early in the auditory system. In that work, au-

dio recordings of the syllables /ta/ and /da/, phonated and whisp ered, were

presented to anesthetized chinchillas, and auditory nerve recordings taken.

Global time averaged p eri-stimulus time diagrams for b oth syllables were
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found to b e distinct, suggesting a di�erent neural enco ding for voiced ver-

sus unvoiced phonemes in whisp er. Furthermore, they found an exaggerated

double onset in the neural signal in resp onse to /da/ aligned with the plosive

burst and vowel onset, which was not found in the resp onse to /ta/. This

suggests that a sudden burst in energy a second time after the plosive burst is

a discriminating characteristic of the voiced phoneme. Thus, there is already

evidence that the inner ear and pro cess of enco ding in the auditory nerve

treats voiced and unvoiced phonemes di�erently in whisp er � the following

p erceptual results thus do not seem very surprising.

2.3.2 Perception of Vowels

Kallail conducted p erceptual exp eriments to determine the identi�ability of

the vowels /i,æ, 2,a,u/ when whisp ered. Sp oken and whisp ered tokens were

collected from twenty female adult sp eakers, and presented to 2 panels of

11 listeners. Listeners, who were all graduate students in linguistics, were

allowed to cho ose from the vowels and glides I, E,æ, 2, A, V,u/ as resp onses.

He found that listeners could identify the correct vowel 85% of the time in

phonated sp eech, and 63% of the time in whisp ered sp eech. Analysis of the

confusion matrices indicate that errors tended to o ccur with phonemes close

by in the vowel space. A second exp eriment using essentially the same typ e

of test utterances but with 15 male sp eakers gave essentially the same result �

that vowel identity was less accurately conveyed in whisp er than in phonated

sp eech, but still reasonably well conveyed. Although the author claims that

whisp ered vowels �lack acoustic features imp ortant to vowel identi�cation,�

this do es not app ear to b e the case since in many cases formant structure is

well preserved.

A similar exp eriment was conducted by Tartter [72]. They recorded sp o-

ken and whisp ered versions of the vowels /i, I, E, æ, a, O, u , 2, U, Ç/ within

the consonant context [h _ d] , from 3 male and 3 female sp eakers. Twelve

listening sub jects were �rst familiarized with the vowels by having the ex-

p erimenter review and pro duce voiced versions of them. The sub jects were

divided into two groups, the �rst group recieved additional instruction re-

p eating the live-voice demonstration, and were also familiarized with sp eakers

in the test data. Each group was administered a p erceptual test with two
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sets of stimuli, one whisp ered, one phonated. Overall results showed go o d

identi�ability of each vowel, ranging from 80% to 99% for phonated tokens

and 72% to 99% for whisp ered vowels. Per-vowel accuracies did not drop by

more than 20%, indicating a high rate of identi�ability of vowels in whisp er.

2.3.3 Perception of Phonemic Voicing in Obstruents

There is consistent evidence that phonemic voicing is conveyed in whisp er

despite the lack of glottal vibration. Some of the earliest work by Dannen-

bring [73] con�rms this. In this work, the author recorded his own whisp ered

CV tokens rom 12 consonant contexts /b,p,d,t,g,k,z,s,v,f,ð, T/ and the three

corner vowels /i,a,u/ contexts. Listeners were then presented with these CVs

tokens, and given a choice of the correct consonant, or the consonant with

opp osing voicing distinction. The 12 listeners who participated were also

asked to rate their con�dence of each judgement on a scale of 1 to 7. In

e�ect this put each judgement on a 14-p oint scale, spanning con�dent un-

voiced judgement on one end to con�dent voiced judgement on the other

end, from which the rank-based D statistic was computed [74]. His results

showed that sub jects were b oth con�dent and correctly judged most voicing-

distinct opp osed pairs. Go o d judgements were obtained for the plosives in all

vowel contexts, but p o orer judgements were obtained for the fricatives and

a�ricates. In summary, naive listeners were found to b e able to discriminate

b etween whisp ered voicing distinct phonemes with con�dence.

One principal study by Tartter [75] involved the p erceptual study of whis-

p ered consonant-vowel syllables. We can think of this study as analogous to

Miller and Nicely's classic exp eriment, but for whisp ered sp eech. Her stimuli

consisted of so called �nonsense� syllables with a consonant and following

vowel (CV), pro duced by a single male and a single female talker. The 18

consonants used were /b,d,g,p,t,k,m,n,l,w,y,v,f,z,s, S, Z/. Notice that the af-

fricates were omitted from this exp eriment. Just as in Miller and Nicely

[76], the vowel /a/ was used. Six listeners involved in the study were asked

to identify consonant in the �rst exp eriment, and sp eaker sex in the second

exp eriment. However, results from their gender identi�cation exp eriment

cannot b e generalized due to the small numb er of sp eakers, as listeners could

b e distinguishing them based on individual characteristic rather than prop-
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erties p ertaining to gender.

Confusion matrices were constructed for the consonant identi�cation task

by accumulating the resp onses from the listeners: for each resp onse the stim-

ulus gives the row and resp onse gives the column of the confusion matrix,

for which a count is accumulated. Articulation indices were computed from

these matrices using Miller and Nicely's formula. Tartter assessed how much

linguistic information was transmitted by collating the matrices into smaller

ones based on the desired feature, and computing information transmission

for each feature

T(x) =
X

i;j

ni;j

n
(
log2ni =n � nj =n

ni j=n
); (2.1)

where ni;j is the entry in the collated confusion matrix, n is the numb er of

categories, and ni and nj are row and marginal sums. This approach can

b e viewed as computing the joint entropy of P(�̂; � ) , where � corresp onds

to the pro duced category and �̂ corresp onds to the p erceived category, for

which ni;j =n are estimators. Her results indicated a 64% accuracy rate for

identi�cation; 0.85 bits p er stimulus for transmission of voicing; 0.94 for

place; 0.61 for manner. It is however not clear what exactly contributes to

this transmission.

One interesting result from the confusion matrices is that [voiced] ! [un-

voiced] errors tend to happ en far more often than the converse. One way

to interpret this is that in whisp er voiced phonemes tends to resemble their

unvoiced counterparts more.

For the /b/ and /p/ phonemes, Munro et al [77], has suggested that dif-

ference in relative intensity b etween the consonant and successive vowel is a

contributor to voicing discrimination. In his �rst exp eriment, he to ok a total

of 32 CVs with the /p,b/ consonant and /æ, E,i,u/ vowel contexts from two

male sp eakers and examined their oscillograms. He de�nes two statistics: the

rise times t50 and t75, representing the time it takes from the onset of the

burst to resp ectively reach 50% and 75% amplitude of the mean amplitude

of the following vowel.

His measurements seem to indicate that /b/ tokens have slower rise time

than /p/. Perceptual exp eriments were conducted on 6 female and 2 male

listeners. Overall an accuracy of 63% was obtained for /p,b/ discrimination.

Unfortunately, the numb er of tokens in the exp eriment was small and thus

the statistics unconvincing. Furthermore tokens that were on the more pro-
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totypical of this feature � that is /p/ with fast rise times, and /b/ with slow

rise times, did not app ear to b e identi�ed with greater accuracy.

2.3.4 Perception of Pitch and Tone in Whisp er

Several studies have concluded that listeners can p erceive pitch in whisp er,

although exactly how is probably still an area of contention. Thomas [78]

asked listeners to listen to whisp ered vowels and sp ecify their pitch by setting

the same pitch on a pure tone oscillator. He found that the pitch set by the

test sub jects often corresp onded with the lo cation of the second formant

lo cated with acoustic analysis.

Higashikawa et al studied the p erception of whisp ered pitch [79]. Six male

and six female native sp eakers of Japanese were asked to whisp er the vowel

/a/ in three pitches: ordinary, high and low. The subsequent listening test

with �ve otolaryngologists found accurate identi�cation for 11 of the sp eakers.

The �rst three formants of accurately identi�ed vowels were examined, and

pitch was found to systematically correlate with the frequencies of the �rst

three formants. In another one of their studies [80], they found evidence to

suggest that whisp er pitch p erception o ccurs in a more complex way: that it

is in�uenced by simultaneous changes in F1 and F2.

Cheung [81] investigated whisp er pitch in Cantonese - known to b e highly

tonal with nine tones. The author recorded stimuli for 4 pronunciations with

6 tones from 3 male and 3 female sub jects and conducted a tone identi�cation

exp eriment with 12 listeners. His results found tone identi�cation for some

of the tones to b e ab ove chance, at an overall identi�cation rate of 22%.

Many other languages also use pitch phonemically: sounds that are es-

sentially the same except for the pitch contour mean di�erent things. For

instance Thai is known to have 5 di�erent tones[82]; Mandarin has 5 tones

[83]; East Norwegian has pitch contours [84]. Abramson presented his sub-

jects with sets of whisp ered Thai words [82], each containing 4 to 5 distinct

words which di�ered only in tone. His �rst result involving monosyallabic

words was inconclusive, identi�cation rates hovered around chance. A sec-

ond exp eriment involving groups of words with di�erent tone but whisp ered

in the same sentence contexts showed markedly improved identi�cation. His

results seem to suggest that information p ertaining to tonality is distributed
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in longer contexts.

A similar exp eriment in East Norwegian involving sentence level contexts

was conducted by Nicholson [84]. The authors devised a series of sentence

pairs which were identical in the front up till a p osition where either word

from a pair of similar words with di�erent tone was found. They played back

sp oken, whisp ered and resynthesized synthesized versions of these utterances

up to and including the tonal word, and asked listeners to cho ose one of two

options to complete the sentence. Their results showed that listeners were

able to identify the tone in whisp ered sp eech up to a 61% accuracy. These

�gures were found to b e ab ove chance, and suggest that tone information is

conveyed in whisp ered sp eech.

Gao [83] conducted a detailed study of tones in whisp ered Mandarin. In

Mandarin, tone is conveyed by a numb er of factors - notably through pitch

contour; other cues such as amplitude contour exist. Acoustic data were

collected from 2 male and 2 female sp eakers. Her stimuli consisted of the

syllables /ba/, /fa/ and /ma/ in all four tones in b oth isolated and a para-

graph level context. For the longer contexts, a pair of sp eakers were made to

enact a small conversation in which the syllables were emb edded. Acoustic

measurements found a longer syllabic duration in whisp er. In some cases,

esp ecially for females, a more exaggerated amplitude contour was found.

Perceptual exp eriments with 10 female listeners found over 90% accurate

identi�cation for sp oken tones and 60.1% in whisp er. The author suggests

that the most imp ortant contributors to p erception are the whisp er's �sp e-

cial maneuvers� to exaggerate acoustic prop erties that correlate with tone,

amplitude contour, and semantic context.

When taken together, these studies are inconclusive and app ear to sug-

gest that the acoustic cues for tone vary from language to language. This

also must b e the case when whisp ering. It is clear, however, that in some

languages tonality is conveyed.

2.3.5 Perception of Sp eaker Identity and Gender in Whisp er

Voice is an intrinsic part of identity, and they are �unique like p ersonal faces.�

[85] One key comp onent of identity is sp eaker gender. The second exp eriment

in [72] dealt with the sp eaker identi�cation in whisp er. The twelve sub jects
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involved in the exp eriment were familiarised with the phonated versions of

the utterances, and then asked to identify the sp eakers for the whisp ered

versions. The overall accuracy for each sp eaker ranged from 46.2% to 62.5%,

well ab ove chance at 33%. Some listeners were highly comp etent, obtaining

as high as 96.3% accuracy. Her results suggest that certain acoustic cues

p ertaining to sp eaker identity can carry across whisp er � she suggests that

sp eaker syllable duration to b e one of these.

Lass [86] recorded whisp ered isolated vowels from 10 male and 10 female

sp eakers, and conducted a p erceptual exp eriment with 15 listeners. He found

a 75% accuracy rate for whisp ered vowels and 95% accuracy for phonated

vowels. His results clearly con�rm that gender information is carried across

in whisp er. Whether other facets of sp eaker identity carry through is not

clear, and there is ro om here for further study.

2.3.6 Perception of Emotion in Whisp er

There is some evidence that emotional cues can b e found in whisp er. In [70],

Tartter recorded CV utterances from three male and three female sp eakers

of North American English. Three typ es of sp eech were pro duced: the �rst

sp eakers were told to physically smile but �try not to sound happy�. The

second was similar but done for frowning. In the third, sp eakers pro duced

whisp ered sp eech while physically smiling, but not trying to sound happy.

Results from listening tests involving 6 listeners showed that they were able

to detect physical frowning in normal and whisp ered sp eech. They could

detect physical smiling in normal sp eech, but did not seem to b e able to

detect physical smiling in whisp ered sp eech.

2.4 Applications of Sp eech Technology with Whisp er

We now turn to some more recent work involving sp eech technology, of which

there is less literature. Most studies to date have involved the application

of automatic sp eech recogntion and mo del adaptation from phonated sp eech

to whisp er. These metho ds have generally used the most basic techniques.

One particular interesting application is the morphing of whisp ered sp eech

to voiced sp eech. There are several approaches in the past that deal with

35



Draft of Novemb er 17, 2010 at 13 : 35

this.

2.4.1 Detection of Whisp ered Sp eech

As a precursor to pro cessing, whisp ered sp eech has to b e segmented from

non-whisp ered sp eech. Carlin et al [87] describ es an algorithm for detecting

whisp ering in the midst of phonated sp eech. They employ two features based

on the di�erent sp ectral tilt in whisp er and the lack of voicing in order to

discriminate whisp er from normal sp eech. The �rst feature is a ratio of high

frequency energy to low frequency energy, 2.5 kHz b eing the cuto� for the

di�erent frequency bands � this feature can capture the reduced sp ectral

tilt in whisp er. The second uses LPC analysis and applies an inverse �lter

in order to get at the residual signal. If we accept that LPC is a go o d

enough mo del for the transfer function of the vo cal tract, what we are left

with is the residual that corresp onds to the glottal excitation. Mo di�ed

auto correlation was p erformed on a cub ed version of the residual signal, by

computing Pearson's linear correlation co e�cients b etween data in the �rst

and second halves of the input frame. After this, p eak picking was applied

to extract the maximum auto correlation � whisp ered frames of data would

have small amplitude, but voiced frames would have large amplitude. Finally

clustering was applied to classify whisp ered and phonated sp eech frames.

Their approach was found to b e able to correctly detect whisp ering 97.5% of

the time.

2.4.2 Enhancement and Recognition of Whisp ered Sp eech

The most recent and signi�cant work on the recognition of whisp ered sp eech

is the do ctoral thesis of Rob ert W Morris [69]. In this work, a numb er

of separate studies were conducted, with the intent of improving an existing

technique of phonating whisp ered sp eech to pro duce normal sounding sp eech.

Although the thesis covers algorithms and estimation techniques for sp eech

enhancement, noise and removal, I shall only deal with two sets of studies

most relevant to the thesis.

The thesis relies heavily on the Diagnostic Rhyme Test (DRT) as a means

of discerning which part of the acoustic channel enco des distinctive features
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for sp eech. This DRT pro ceeds by presenting a listener with an audio record-

ing of one of two p ossible words emb edded in a carrier sentence. The chosen

words are minimal pairs, di�ering only by one typ e of distinctive articulatory

feature, b e it voicing, nasality, sustension, sibilation, graveness or compact-

ness. The listener is usually faced with a binary decision; the raw scores for

DRT are the normalized di�erence b etween the correct and wrong resp onses

to the test. This same test can also b e administered to an articial system,

that is an automatic sp eech recognizer.

The �rst set of studies dealt with the intelligibility of normal and whis-

p ered sp eech, under di�ering noise and sp eech co ding conditions. To do

this, the author recorded a small corpus of whisp ered and normal sp eech,

uttered by three male and three female sp eakers, under three typ es of noise

conditions (quiet, o�ce and street cafe). The utterances were selected from

a set of 15 phrases, and 232 isolated words, with the intent of conducting

the Diagnostic Rhyme Test (DRT) [88] and Diagnostic Acceptability Mea-

sure (DAM) resp ectively. The utterances were reco ded using three di�erent

co decs (CVSD, MELP 2400, MELP 2400 MPP), and the DRT administered

to eight listening sub jects. Their results under quiet recording conditions

showed that the ma jority of confusions for whisp ered sp eech lies with voic-

ing decisions. However, when sp eech co ding was applied, the intelligibility

of unvoiced whisp ered words to ok a severe hit, indicating a p ossible inad-

equecy of the investigated algorithms (esp ecially MELP) at enco ding whis-

p ered sp eech. Under noisy environmental noise conditions, there is a reduc-

tion in intelligibility of the voicing distinction, but these can b e ameliorated

by noise-enhancement algorithms.

One particularly stunning result from this is that applying MELP do es not

degrade the voicing information of whisp ered sp eech, when the whisp ering

is done in a noisy environment. There are several p ossible theories why this

is the case; p erhaps in a noisy environment, p eople whisp er in a di�erent

way, emphasizing the acoustic cues which just so happ en to b e carried across

through the enco ded channel. If this is indeed true, then whisp ering under

quiet and whisp ering under noise conditions might as well b e considered as

two distinct typ es of acoustic variability, that the universal sp eech deco der

needs to comp ensate for. The results also indicate the imp ortance of applying

well designed noise-enhancement algorithms as a prepro cessing �lter to the

sp eech recognition system.
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The second set of studies examine the e�cacy of traditional, well estab-

lished Automatic Sp eech Recognition (ASR) techniques at recognizing whis-

p er, once again using the DRT as a test framework. In all of the exp eriments,

the commercial HMM-based Fast-Talk to ol was used. For normal, full voiced

sp eech, the machine recognizer p erformed p o orer than the human listeners,

but was still able to tell apart the minimal pairs corresp onding to all six dis-

tinctive features. This is not the case for whisp ered sp eech: the test scores

suggest that the machine recognizer is making a decision at chance for two

typ es of cepstral features. Furthermore, no amount of adaptation app ears to

improve this problem of voicing distinction.

By carefully interpreting the data from the intelligibility tests in conjunc-

tion with the automatic recognition tests, we can obtain key insights on what

needs to b e done to improve the state of the art. Although the exp eriments

themselves are quite thorough, there are a few gaps which need to b e �lled.

Most imp ortantly, the question of how voicing distinction is carried across

the communication channel remains unsolved: it is clear that the ASR sys-

tem cannot tell apart voicing for whisp ered sp eech, but do es the problem lie

with the feature parameterization, or is it an issue with the pattern recog-

nition algorithm? It is unfortunate that the human-listening tests neglected

to include resynthesized waveforms using MFCC features, as this would give

us conclusive pro of (or dispro of ) of the inadequacy of MFCC for recognizing

whisp ered sp eech.

Although the Morris Thesis provides some very interesting ideas, there

app ear to b e some drawbacks with the metho dology. First, the sp eech corpus

is to o small and to o varied in terms of the noise and environmental conditions:

statistical variances are p ossibly not su�ciently ameliorated by the lack of

data. Second, the choice of a proprietary, closed-source to ol, employing a

relatively untested Jump Markov Linear System as the pattern recognition

backend (as opp osed to the Hidden Markov To olkit - a more well established

research to ol), puts into doubt the strength of the conclusions that can b e

drawn from the DRT score data. Furthermore, the author himself admits that

the JMLS training requires a large numb er of parameters (exp onential with

regards to the length of the signal) b e estimated, further exacerbating the

problem p osed by data insu�ciency. Clearly, these issues must b e addressed

in a follow-up exp eriment, in order to demonstrate b eyond doubt that there

is a problem with the current acoustic feature extraction, and conclude that
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research in voicing distinction is the missing gap in our understanding.

2.4.3 Automatic Recognition of Whisp ered Sp eech

In 2002, researchers at the University of Nagoya [68] collected an audio-

visual corpus of whisp ered sp eech. Their intended application was to de-

velop a sp eech recognizer sp eci�cally capable of handling whisp ering on cell-

phones. A parallel corpus of normal and whisp ered utterances were collected

for Japanese. A total 68 male and 55 female sp eakers read phonetically bal-

anced sentences, and audio and visual recordings were made under two typ es

of recording environments: close talking microphone (CTM), and telephone

handset (TH). For the CTM setup, recordings were made in a soundpro of

ro om at high �delity, whereas with the TH setup, recordings were made in

b oth a soundpro of and less quiet environment (their computer ro om), the

co dec (32kbps ADPCM, G.726) for the Personal Handphone System (PHS)

applied.

At least three mini-studies, relevant to our work, were conducted. First,

their examination of the sp eech sp ectra indicated on average, an upward

shift in b oth the �rst and second formant frequencies. The e�ect is more

pronounced and consistent with the �rst formant, but is only marginal with

the second formant, esp ecially in the case of the vowels /i/, /u/ and /e/

which sit at the extremities of the vowel chart.

Next, the authors examined the averaged sp ectra of each phoneme class,

and computed the cepstral distances b etween the averaged sp ectra for each

sp eci�c phoneme. Their phone segmentation and alignment was obtained au-

tomatically using dynamic time warping with the Itakura distance measure.

The results, tabulated for all the phonemes indicate a drop in energy near

low frequency band, this is consistent with the idea that voicing is absent,

and thus pitch energy is lower. However this e�ect is also present for the

unvoiced consonants

Measurements of the averaged cepstral distance for each phone class shows

that the vowels, glides and nasals di�er the most going from normal to whis-

p ered sp eech, followed by the voiced plosives and alveolar fricatives, then �-

nally unvoiced plosives, a�ricates and other fricatives. The next set of studies

deal with automatic recognition, b oth at the phoneme level, and with a full
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word recognizer. Using HMM-based techniques, the authors train whisp ered

and normal sp eech acoustic mo dels from the data, and evaluated syllable and

word recognition accuracy for b oth typ es of acoustic mo dels on b oth typ es

of sp eech. The outstanding result from these exp erments is that the whis-

p ered mo del p erforms almost as well on either typ e of sp eech. The authors

next use MLLR adaptation to improve the ability of their normal sp eech

mo del to recognize whisp ered sp eech. With merely 10 utterances of a target

sp eaker (i.e a closed test), the accuracy of the normal sp eech mo del improves

to within that of the recognizing the whisp ered sp eech with a trained mo del.

Adaptation with a development set on an op en test show a signi�cant im-

provement, but leaves ro om for improvement. Thus, a reasonable conclusion

to draw is that MLLR itself is a robust enough technique to allow a more

readily available normal sp eech mo del to recognize whisp ered sp eech.

Error studies of the confusions made by the whisp ered phoneme recognizer

indicate a relatively p o or mo del was trained. What is more interesting is

their results with full word cross-mo de recognition. In this setup, the same

metho dology was used for training acoustic mo dels of whisp ered and normal

sp eech. Next, these mo dels were set up with a word grammar and used to

p erform recognition on b oth typ es of sp eech. (i.e. use a whisp er mo del to

recognize b oth whisp er and normal sp eech, and normal mo del to recognize

b oth whisp er and normal sp eech). Their results are nothing short of stunning

- the whisp ered mo del worked as well as the normal mo del for normal sp eech.

There do es not app ear to b e a clear reason for this result, and in fact our

exp eriments do not con�rm it. It is crucial to p erform a more thorough

investigation of this matter.

2.4.4 Resynthesis of Phonated Sp eech from Whisp er

One interesting application is to attempt to reconstruct phonated sp eech from

whisp er. This is motivated in part by the need to improve the quality of life

for p ost-laryngectomy patients, allowing them to �sp eak� with a normal voice

in spite of their dysfunctional larynx. The ma jority of approaches employ

metho ds from sp eech co ding � a basic framework is illustrated in Figure 2.1.

The basic idea is to assume that the synthesis parameters asso ciated with

voice are missing, and to �nd a way to reintro duce them.
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Figure 2.1: Basic Framework for Reconstructing Voice

Morris [69] provides an algorithm based on this approach using Mixed-

Excitation Linear Prediction. He explicitly mo dels voice parameters using a

Jump Markov Linear System, and uses these to reintro duce pitch.Additional

re�nements include a Wiener �lter to remove breath noise from the whis-

p ered sp eech, and also a frequency warping algorithm to comp ensate for the

di�erent formant lo cations in voiced and whisp ered sp eech. Multiple ut-

terances were resynthesized, applying a combination of true (original voiced

sp eech) parameters and parameters generated from his algorithm. His results

indicated that using mo di�ed sp ectral parameters hurt DMOS scores more

than using synthetic pitch parameters. This suggests that a more intricate

algorithm for handling formant shift is needed.

A more recent work by Sharifzadeh [89] explores the same concept but

using Co de Excited Linear Prediction [90]. Their approach works by reintro-

ducing pitch, which is estimated using a dynamical system. On examination,

the reconstructed pitch contours seemed to mimic naturally o ccuring pitch.

However, as no sub jective tests were undertaken we cannot fully evaluate the

quality of their algorithm.
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CHAPTER 3

AUTOMATIC SPEECH RECOGNITION

3.1 Overview of LVCSR

Large vo cabulary continuous sp eech recognition (LVCSR) is an ongoing and

active �eld of research, as it has b een for the past 30 years [91, 92]. The most

successful metho ds to date are based on the Hidden Markov Mo del which

were intro duced in sp eech recognition by Baker [93, 94], and Jelinek [95].

Many systems to day employ this approach (e.g HTK [96], Sphinx [97, 98],

Julius [99, 100], Decipher [101]). This is not to say that other approaches

do not exist; for instance, segment-based metho ds [102, 103, 104], and �nite-

state transducers [105, 106] are also in use. Arguably, metho ds like Dynamic

Bayesian Networks are a generalization of the HMM approach, and are quite

similar to it [107]. Even more techniques, such as p oint-pro cess mo dels [108]

are still b eing prop osed to day. A thorough categorization and review of all

these techniques would b e b eyond the scop e of this thesis � instead we will

fo cus on the algorithms that we applied in our exp eriments.

In this section we will review the HMM-based approach [93, 109, 110]

and its asso ciated techniques. This approach to LVCSR are probabilistic in

nature, and makes some assumptions ab out the nature of sp eech that at times

has b een criticized by sp eech scientists [111]. The ob jective of probabilistic

sp eech recognition, when given a sampled acoustic signal, to �nd the b est

matching hyp othesis of what words were actually said [112]. In other words,

we want to �nd the optimum sentence

S� = argmax
S

P(SjO); (3.1)

given a sequence of observations O = ( o1; :::ot ) on the acoustic sp eech signal.

The sentence S = ( w1; :::wm ) is a hyp othesis built up of an arbitrary m num-
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b er of words w1; ::wm chosen from a �xed vo cabulary W . In statistical sp eech

recognition, the maximization is p erformed with a given mo del � of sp oken

language. If we treat the probabilistic mo del as a generative mo del (e.g. the

Hidden Markov Mo del), then the probability distribution is dep endent on

the given mo del, Eq. 3.1 b ecomes

S� = argmax
S

P� (SjO) (3.2)

Now, � itself could represent any reasonable statistical mo del of sp oken

language, but a completely unstructured mo del for sp oken sentences would

require so many parameters to b e estimated that training it b ecomes in-

tractable [113]. Sp oken language is hierarchical in nature [114] : sentences

are made of words, which are made of sub-word units such as the phoneme,

which in turn is made up of landmarks; this hierarchy can b e exploited to

factorize the numb er of p ossible variations and thus parameters required at

each level. Most commonly we consider the full mo del as a pro duct of pa-

rameters mo deling high level language (i.e. typically the language mo del � lm

that mo dels word probabilities) and the parameters mo deling acoustic sub-

units (i.e. phonemes or landmarks, using an acoustic mo del � ac [115]). In a

practical system, a pronunciation dictionary, not necessary probabilistic, will

also b e needed (i.e. a pronunciation mo del � pron [116]). This breaks down

the parameters that need to b e estimated for sp oken language as

� = � lm � � pron � � ac: (3.3)

Applying conditional probability, Eq. 3.2 b ecomes

P� (SjO) = P� lm (SjW)P� pron (Wj�) P� ac (� jO); (3.4)

where � represents a sequence of sub-sentence units (usually phoneme), and

� ac and � lm represent statistically estimable parameters that make up the

acoustic model and the language model resp ectively.

Almost any state of the art system (shown in Fig 3.1(b) can b e decoupled

along these lines, into two halves: notably the frontend consisting of signal

pro cessing and acoustic pattern recognition (with acoustic model � ac and pro-

nunciation mo del � pron ), and the backend that enforces linguistic constraints
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with the language mo del � lm . In practice systems p erform deco ding simul-

taneously, so that this distinction b etween pattern recognition and enforcing

linguistic constraints is somewhat blurred.

This architecture has sub-comp onents which are directly analogous to the

functional parts of human cognitive sp eech pro cessing. A suggested mo del

by Pisoni is shown in Fig. 3.1(a), where we can see some parallels: for

instance, the signal pro cessing is analogous to the human ear, the acoustic

pattern recognition to what is done in the cortex, and the enforcement of

linguistic grammar what is done by our higher mo dules of language. Sp eech

itself b eing native to natural human-to-human communication, there is no

su�cient reason to b elieve that an alien architecture could outp erform the

established setup for this task. Nonetheless, with p erhaps the exception of

Sp eaker [117] or Language Identi�cation [118], exp eriments in discrimination

and classi�cation tasks demonstrate that the b est p erformance of arti�cial

sub-comp onents of these systems do not fare as well as humans at most

common cognitive tasks [119] � the b est recognizers are neither as accurate

or robust as humans.

3.1.1 Frame Synchronous Sp eech Recognition

The HMM-based technique is frame synchronous in nature [120]. That is,

it is assumed that the incoming sp eech can b e analyzed in terms of frames

� these are essentially vectors that represent the signal sampled at regular

intervals of time. They are usually pro duced by analyzing the signal at reg-

ular windowed intervals, using a technique such as the Short Time Fourier

Transform (STFT), although more elab orate time-frequency techniques in-

volving the Wigner distribution [49] and wavelet analysis [121] can b e used.

The recognizer brie�y comprises the following stages, their detailed workings

are describ ed in the sections following.

� Initial Signal Pro cessing - In this stage the acoustic wave-form is con-

verted into a frame. The most common metho d is to employ a �lter-

bank and cepstral computation. Some noise cleaning may b e p erformed

b efore �lter-bank analysis, and additional p ost pro cessing can b e used

to normalize channel e�ects.

� Acoustic Pattern Recognition - In this stage, the feature vectors are
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(a) Mo del of Human Cognitive Perception of Sp eech (from David Pisoni)
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(b) Architecture of a Generic Large Vo cabulary Automatic Sp eech Recognizer

Figure 3.1: Sp eech Recognition by Humans versus Machine.
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recognized and categorized into sub-word units. The most common

acoustic target used are wordsalthough other subword units like sylla-

bles or phonemes or features such as landmarks [122, 123] could also b e

used available. The recognizer is in�uenced by trained acoustic mo dels,

language bigrams and the pronunciation dictionary as shown in Figure

3.1(b). The end result gives us the b est or a list of n-b est transcrip-

tions, which could then b e decomp osed into b est �tting sequence of

phones.

The acoustic mo del itself could b e mo deled using any probabilistic

graphical mo del (eg. the Hidden Markov Mo del (HMM) [109], Maxi-

mum Entropy Markov Mo dels (MEMM) [124, 125], Dynamic Bayesian

Networks (DBN) [107, 126]). An emb edded word graph is constructed

by emb edding phone level graphical mo dels into a word-level graph (see

Figure 3.2), each no de in the �nal graph corresp onding to a sp eci�c

mo del state. Using Viterbi deco ding, no des in the mo del are �acti-

vated� at varying likeliho o ds - the transitions out of the dynamic state

of each graph no de usually represent the detection of an acoustic event.

After pruning away unlikely hyp otheses, the most likely word sequences

can b e compactly represented in a lattice.

� Enforcement of Linguistic Constraints - In this stage, the high level

linguistic knowledge is imp osed on the lattices or phone strings to

obtain actual word hyp otheses. The knowledge used here typically

corresp onds roughly to the grammatical comp onents of syntax , prag-

matics and semantics . In the case when the job of the recognizer is

limited [127], the constraints can b e imp osed by a task dep endent reg-

ular grammar. In large vo cabulary recognition, the user is allowed to

say anything he or she wants, a more p ermissive mo del is required.

The most common of these are n-gram mo dels [128]. Sometimes, it is

not necessary to recognize whole words for an intended application �

an example of this is in language identi�cation, in which only limited

linguistic knowledge, such as the phonotactics of a language might b e

enforced [129].
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Figure 3.2: Example of Emb edded Word Graph

In this example, we have monophone mo dels shared across a two-word

unigram lo op grammar.
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3.1.2 Sp eech Parameterization

The �rst stage is to analyze acoustic samples into frames (see Eq. 3.1):

to actually pro duce the vector sequence (o1; :::; ot ) for further analysis. A

diagram of how to construct a signal pro cessing front end using currently

available techniques is illustrated by the system diagram of Figure 3.3. Here,

signal pro cessing can b e further broken down into stages:

� First, the raw waveform is prepro cessed - at this stage any combina-

tion of a Wiener �lter (to remove noise) [130, 131, 132], preemphasis

(preemphasis to negate the zero caused by the glottis and vo cal tract).

The result is a �cleaned-up� version of the acoustic samples that were

presented, which hop efully are easier to p erform recognition on.

� Next, the pro cessed samples can b e fed to some sort of frame-based

analysis, this is usually some kind of �lterbank - in it's simplest form, a

Hamming Window and the Short Time Fourier transform [10] su�ces,

even though more elab orate techniques such as the Wigner transform

[49] could b e used. This pro duces a frame of sp eech at regular intervals,

say every 2 to 10 milliseconds.

� Finally, additional p ost-pro cessing on the sp eech vectors can b e option-

ally p erformed, in particular, sp eech normalization techniques such a

RASTA [133] can b e p erformed, and cepstral computation to decorre-

late the vector comp onents usually so that Gaussian mo dels employing

a diagonal variance will b e suitable for later acoustic mo deling. Cep-

stral mean normalization [134] can ameliorate volume and �channel

e�ects� due to the di�erent frequency resp onse of the recording de-

vice and the acoustics of the recording environment. Calculation of

dynamic features [135] (delta and delta-delta co e�cients) can b e done

to comp ensate for the inadequacy of having a short time window in

a sp eech frame, unable to capture longer, or more temp oral acoustic

events. The �nal output is a sequence of vectors, hand-picked from any

combination of available �lter-banks and frame analysis techniques, in

some cases additional pro cessing to reduce the dimensionality of the

sup ervector can b e p erformed [136], resulting in a vector sequence that

is now ready to b e recognized.
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The various signal pro cessing front-ends presented here were prop osed at

di�erent times in the study of machine recognition, b eginning with the ear-

liest we have

� The LPC and the LPC cepstra, which can directly capture the reso-

nances of the oral cavity, but will not b e able to capture pitch well

[32].

� The PLP cepstra, which weights the sp ectral co e�cients output from a

�lterbank with �lters spaced at critical bands from each other, in a way

that mimics auditory sensitivity at di�erent frequencies, b efore taking

cepstral computation [137].

� The Mel-Frequency Cepstral Co e�cients employ frequency warping us-

ing the Mel-scale. The Mel-scale is p erceptually scaled to comp ensate

for the b ehavior of the human auditory system in having di�ering sen-

sitivities to change in frequency at di�erent frequencies [138]. The Mel-

sp ectral sp ectral co e�cients can b e generated by overlapping a series

of triangular �lters at regular intervals along the Mel-Frequency scale,

this is essentially implemented by windowing the magnitude STFT.

� Frame-based analysis using a single �lter-bank is unable to capture

long term mo dulations in the sp eech signal, some of this is thought

to b e imp ortant for the recognition of consonants. The absence of

dynamics in a frame by frame approach can b e crudely addressed by

using delta and delta-delta features [2]. The Temp oRAl Pro cessing

features (TRAPs) suggested by Hermansky [139, 140] , comp ensate for

this by considering features that incorp orate a long term temp oral slice

of the time-frequency resolution of the signal (i.e. a horizontal window

of information centered around the region of interest), as opp osed to a

single frame (i.e. a vertical slice of the sp ectrogram).

� The term Auditory Filterbank seems to refer to several variations of

the same basic structure. The design of such �lterbanks is motivated

from our understanding of how the inner ear functions: b ehavior of

the traveling wave causes the greatest displacement at a sp eci�c length

along the Basilar membraine, which in turn has that mechanical energy

transducted by a sharply frequency selective inner hair cell [141]. The
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structure of auditory �lterbanks generally have a �lterbank in the initial

stage spaced at critical bandwidths along the frequency sp ectrum, fol-

lowed by half-wave recti�cation simulating the inner hair cell resp onse,

then low pass �ltering simulating the slow temp oral resp onse of the

spiral ganglion cells. The typ e of �lterbanks used could b e constant-Q

(or gammatone) �lterbanks that mimics the resp onse prop erties of the

Basilar membrane.

� The discrete wavelet packet (DWP) is a [121] variation of the discrete

wavelet transform (DWT), in which an arbitrary tree structure is used.

This allows us to make arbitrary balances and trade o�s b etween time

and frequency resolution at di�erent parts of the sp ectrum.

3.2 Acoustic Pattern Recognition using Hidden

Markov Mo dels

A thorough categorization of all the approaches for pattern recognition is

b eyond the scop e of this thesis - the interested reader is instead referred to

this excellent textb o ok [142]. As b efore, we will fo cus on the Hidden Markov

Mo del. Over the years, the training of HMMs for sp eech have evolved to the

p oint of almost b eing a black art - building a go o d acoustic mo del involves

many tricks. A starting p oint to pro duce a go o d baseline recognizer can b e

found in the do cumentation [143] for the Hidden Markov To olkit (HTK). The

parameters of the mo del have to b e carefully chosen, in order to minimize the

numb er of parameters that need to b e trained, which at the same time reduces

the amount of training data required to build a decent acoustic mo del.

In the Hidden Markov Mo del, observations of the data are conditioned

up on an unknown hidden state. A diagram for a typical three-state mo del is

shown in Figure 3.4 [143]. Such a mo del would b e used to mo del the evolution

of observations over the duration of a phoneme. At each time step, the hidden

state may evolve to a new state or stay the same. The probabilities of state

evolution are mo del by a matrix A , where A i;j represents the conditional

probability of the hidden state going from state i to state j b etween any

particular pair of sp eech frames, given that we are already in state i . Zero

entries represent imp ossible transitions. A common rule used is to imp ose
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Figure 3.4: Diagram of a 3-state left to right HMM
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the restriction that states evolve from �left to right�: here, state 3 do es not

go back to state 1. The motivation for doing this in phoneme mo deling,

for instance say a plosive, is so that we might see a progression of feature

observations as we enter the stop, release, and vowel onset for the plosive.

In this case we should not exp ect to see the phoneme release or stop phases

after vowel onset, and so on and so forth.

In sp eech recognition, the observations usually come from combination of

feature extraction techniques mentioned in section 3.1.2, and essentially give

us a stream of feature vectors that change over time. Although it is not

necessary, a multivariate mixture Gaussian Random Variable is often used

to mo del these vector sequences. That is, for the observation x given the

sp eci�c phoneme s and state i , its likeliho o d is given by

P(xj� ac;s;i ) =
KX

k=1

ws;i;k (2� )� d
2 j�

� 1
2

s;i;k je(x � � s;i;k )T � � 1
s;i;k (x � � s;i;k ) ; (3.5)

which follows a Gaussian Mixture distribution with K comp onents, where

w s are the weights of each mixture comp onent k , and � s and � s are param-

eters to Gaussian distributions. Training of the HMM is achieved using the

Exp ectation-Maximization algorithm [109], which iteratively improves from

an initial estimate of the mo del. The E-step of the algorithm guarantees to

increase the log-likeliho o d of the data given the mo del, and thus is guaranteed

to converge.

3.2.1 Triphone Clustering

Coarticulation is often observed in �uent sp eech: various acoustic parame-

ters of a phoneme may b e altered dep end on its preceding and succeeding

phonemic context [20]. One way to handle this is to explicitly mo del every

likely context for every p ossible phoneme. These so-called triphones let us

assign di�erent probability distributions for the same phone when seen in

di�erent contexts [144]. Unfortunately, the use of triphones greatly expands

the numb er of required parameters for the mo del: a system with originally

39 monophones now has 393
or roughly 1500 times the numb er of parameter

to train. This presents a problem in that we would require roughly that

many times the amount of data in order to get go o d estimates for our the
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parameters of our multivariate Gaussians. Furthermore, the distribution of

triphones is highly non-uniform � there may b e some triphones that o ccur

often, but other plausible ones which do not violate phonotactics may not o c-

cur at all. In order to alleviate this, parameter sharing through clustering can

b e applied. The basic principle here is to assume that some triphone states

are similar enough in nature so that statistics used for estimating either one

of them can b e p o oled in order to get b etter statistical estimates.

Clustering may b e p erformed using a top-down approach [145]. We b egin

with a set of all triphone states and determine which division most evenly

distributes the counts in the data for each state. Divisions happ en along

lines motivated by linguistic knowledge [146]. For instance, one might divide

the states based on a question such as �is the left context a plosive or not�.

The end result of triphone clustering is to pro duce a set of triphone clusters,

that allow statistics from a particular state of various triphones to b e p o oled

for b etter estimation. This also reduces the numb er of trainable parameters

substantially.

3.2.2 Word Pronunciation

Hidden Markov Mo dels are generative models : they b elong to a more general

class of mo dels known as Graphical mo dels; this family includes the HMM's

ideological cousin the Maximum Entropy Markov Mo del [125] (MEMM) that

directly mo dels observation vectors of sp eech. Both mo dels are sp ecial cases

Dynamic Bayesian Networks (DBN). Graphical mo dels are p owerful in that

they can b e emb edded hierarchically - to make the HMM of a word, one only

has to rep eatedly concatenate the HMMs for each phone that is contained

in the most common pronunciation. Alternate pronunciations can b e han-

dled by emb edding HMMs corresp onding to their representative phoneme

sequences in parallel. The deco ding of sp eech, can then b e p erformed by

considering all p ossible tra jectories through the hidden states, applying like-

liho o ds for each of the observed sp eech features computed from the raw

signal. Usually, the estimation of parameters for HMMs is p erformed using

the Baum-Welch algorithm [147] - a sp eci�c incarnation of the Exp ectation-

Maximization algorithm [148, 149]. Viterbi deco ding is usually used to rec-

ognize sp eech [150].
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3.2.3 Imp osing Language Constraints with n-grams

In the case of large vo cabulary recognition, there is usually little constraint

on what can b e sp oken, although we want to coax the system to try to prefer

more meaningful or likely sentences. Under these circumstances, the most

and pragmatic mo del to constrain the numb er of probable utterances is the

n-gram mo del [151]. This mo del works by predicting the next word from the

context of the n -preceding words. The order of the mo del, n is the numb er

of previous words that has to b e taken into account to make this prediction.

Given a sentence S with given a sentence with N words (w1; w2; :::wN � 1) , the

probability of it o ccurring is

P(S) = P(w1; w2; :::wN )

=
NY

k=1

P(wk jwk � 1; :::w1)

�
NY

k=1

P(wk jwk � 1; :::wk� n); (3.6)

where the approximation is due to the assumption that only the next word

is in�uenced by n -preceding mo dels. Some more intricate mo dels improve

on this limited context. Trigger mo dels [152] try to mo del the e�ect of

having pairs of words that may co-o ccur in a sentence but are far apart,

for instance �if � and �then� clauses. Bag of word mo dels [153] mo del long

term contextual information by vectorizing entire sentences or paragraphs

and computing estimating the probability of that vector o ccurring.

In the case when the actual words in the signal are known, a strict grammar

[154] with the words and their alternate pronunciations can b e used to deco de

and automatically �nd word or phoneme segment b oundaries in the sp eech.

Such grammars my b e sp eci�ed in Backus-Naur Form (BNF), and rigidly

restrict what can b e said.

When the grammar is linear, we end up imp osing an exact sequence of

words onto the utterance, allowing only variations in pronunciation. This

metho d, known as forced alignment , can b e used to obtain automatic word

or phone segmentation of the sp eech [155].
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3.3 Sp eaker Indep endent Acoustic Mo deling

A sp eaker indep endent (SI) acoustic mo del with the top ology describ ed in

previous sections can b e built from training data obtained from many di�er-

ent sp eakers. The acoustic mo del for the set of clustered triphones � is the

set of parameters

� ac = f A �;i;j : 1 � i; j � M ; w�;j;k ; � �;j;k ; � �;j;k : � 2 � ; 1 � j � 3; 1 � k � K g:

(3.7)

This includes parameters include state transition probabilities A �;i;j for going

from state i to state j of triphone � , mean � �;j;k and covariance � �;j;k pa-

rameters of Gaussian k of each state j in triphone � , as well as weights w�;j;k

for each mixture comp onent. Note that � and j index a clustered triphone

state, and might b e shared across many di�erent triphones that are deemed

similar. Also in our setup we have 3-state mo dels for the triphones.

Ideally, there should b e enough data from di�erent sp eakers for each phoneme

and context, so that all the parameters are adequately trained. A sp eaker-

dep endent (SD) system, however, is trained from data all from the same

sp eaker. The drawback of such a system is that it may not p erform well

when the sp eaker is changed. In comparison, a sp eaker indep endent system

might p erform b etter on new sp eakers, but since the data for di�erent tri-

phones is drawn from many sp eakers, they inherently have greater variability,

leading to larger covariance values [156]. What this means is that the Gaus-

sians tend to have greater variance, and would give a lower log-likeliho o d over

observed data. In practice it is desirable to obtain a sp eaker dep endent sys-

tem for a target sp eaker when recognizing sp eech, but the data requirements

for adequately training a sp eaker dep endent system from scratch tends to

make this an imp ossibility. One alternative is to use a small amount of data

from the target sp eaker to mo dify the sp eaker-indep endent system. Such

approaches are termed adaptation in the literature.

3.4 Sp eaker-Adaptation Techniques

There are various sp eaker adaptation techniques in use, but the most promi-

nent ones are MAP and MLLR [157]. Eigenvoices is an alternative metho d
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that develop ed from a need to p erform adaptation using very little data

[158]. The three metho ds di�er in b oth their computation and their abil-

ity at adapting acoustic mo dels; MAP requires the most amount of data

to function well, but can p otentially b eat the other two. Eigenvoices can

work well with very little data, but tends to hit a p erformance asymptote

as the amount of data is increased. MLLR on the other hand has prop erties

somewhere b etween the two.

MAP Adaptation

In the MAP approach [159] we assume a prior distribution for the mo del � ac ,

which is then used to maximize the p osteriori probability of observations x ,

such that

� ac;MAP = argmax
� ac

p(xj� ac)p(� ac)

= argmax
� ac

p(� acjx): (3.8)

In practice a suitable prior for the mo del is an initial estimate of the mo del,

which can b e obtained through the Baum-Welch algorithm. In sp eaker adap-

tation, this is simply the original sp eaker indep endent acoustic mo del's pa-

rameters. The solution to this has to b e iteratively estimated using the EM

algorithm. Maximization at each iteration ends up as an up date, that for

most parameters is usually a linear interp olation b etween the original mo del

and an ML-estimate of parameters obtained from the new data, weighted

appropriately by the likeliho o d of seeing the adaptation data.

This approach only up dates mixture comp onents for which data is seen.

Thus, a large and varied amount of data that covers parameters of the entire

mo del is necessary in order to get go o d adaptation results. At the same

time, since comp onents are up dated individually, new estimates of them are

usually very go o d. This explains the high p erformance of MAP adaptation

when mo derate amounts of adaptation data are available.

MLLR Adaptation

Maximum Likeliho o d Linear Regression (MLLR) can b e used to adapt means

or variances of the mo del [160]. MLLR-means works by �nding a linear
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transform on mean parameters, such that the probability of observing the

observation data with the new parameters is maximized. Given a set of mean

vectors

�
� 1:::� k

�
, we �nd

W � = argmax
W

P(xj� ; W � ); (3.9)

here � is the mo del sans mean parameters, and W is a linear transform on

the mean parameters. In practice, an entire set of W transforms are found,

one for each group of parameters b elonging to closely related phonemes. The

groups can b e found by clustering the mean parameters so that phonemes

with similar mean cepstral values group together. Similar to MAP, an EM

algorithm is required to solve the problem. With this approach adaptation

data seen for one comp onent a�ects the entire group. This allows entire

clusters of phone mo dels to b e quickly up dated. Thus less data is required

for adaptation. However, this approach do es not have the sp eci�city of MAP,

and may not p erform as well when there is a lot of adaptation data.

It must b e noted that when the numb er of phone clusters is increased the

b ehavior of MLLR steadily approaches that of MAP. Conversely, using a

single transform for the entire acoustic mo del can ameliorate global e�ects

such as channel distortions well.

MLLR can also b e extended to covariance parameters, in which case an-

other linear transform is found that will maximize the likeliho o d of seen adap-

tation data. A sp ecial case of this is Constrained MLLR (CMLLR) [161] , in

which b oth transforms for means and variances is restricted to b e the same.

In the case of CMLLR, since the exp onent for the multivariate Gaussian can

b e written as (x � W � )t(W�) � 2(x � W � ) = ( W � 1x � � )T (�) � 2(W � 1x � � ) ,

we observe that this is e�ectively computing a pro jection on the feature vec-

tors. When there is only a single global transform, this is precisely what

CMLLR do es; when a set of transforms are used, this uses a di�erent linear

transform on the feature space dep ending on the phoneme. Note that if we

use the means to actually p erform clustering, what this do es is pro duce a

mesh-like mapping from one feature space to another.
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Eigenvoice metho ds

Eigenvoices are a relatively new technique that emerged as a resp onse to

the need for �fast adaptation� [162, 158]. The basic idea is to mo del the

variability b etween di�erent sp eakers as a vector subspace. First, the mean

vectors � (i )
�;j;k of sp eaker i 's sp eaker-adapted mo del are concatenated in a

particular order into a sup ervector � (i )
. These sup ervectors collectively

span a sp eaker subspace, and can b e analyzed with Principal Comp onents

Analysis (PCA). The matrix

U =
�

~� (1) ::: ~� (i ) ::: ~� (K ) ;
�

= E
 V; (3.10)

gives us a set of eigenvoices E = ( e0; e1; :::eM ) , M < K that characterize the

sp eaker space. Usually, the �rst eigenvoice e0 would corresp ond closely with

the sp eaker-indep endent mean vector. The means of any sp eaker-dep endent

mo del is now expressible as

� (i ) = e0 +
MX

m=1

w(i )
m em ; (3.11)

that is, a weighted sum of these eigenvoices. In practice, the matrix U is very

large, and p erforming a full Singular Value Decomp osition is very exp ensive;

it is b etter to compute the just the eigenvoices for the M dimensional sub-

space that we want. One approach to do this is to use the probabilistic

principal comp onents analysis (PPCA) [163], which do es exactly just that

using EM.

In order to adapt to a new sp eaker, we simply compute new weights,

contributions in each eigenvoice, from the adaptation data, and mo dify the

sp eaker indep endent mo del accordingly. Estimation of the new weights is

again accomplished using an EM based algorithm, in this case the Maximum

Likeliho o d Eigenvoice Decomp osition (MLED). The eigenvoice metho d mo d-

i�es the entire parameter set at once, and thus requires very little data to

do adaptation. However, the coarse granularity of the up dates mean that it

quickly hits a limit on p erformance even as more data b ecomes available.

59



Draft of Novemb er 17, 2010 at 13 : 35

3.4.1 Combining Metho ds

In practice, several iterations of EM is required for the various algorithms, b e-

fore the results converge and we get go o d recognition results. One approach

to combine di�erent approaches to leverage the b ene�ts of each metho d [164].

This generally works by using a technique that up dates at a coarser granu-

larity, followed by a �ner technique. For instance, using Eigenvoice followed

by MAP, or MLLR followed by MAP, can improve results dramatically over

just one metho d alone.

3.5 Summary

This chapter has outlined the basics b ehind sp eech recognition technology.

We gave a general framework under which the most well studied and ad-

vanced metho dologies to day use. We have also sp eci�ed the top ology of

the recognizer and acoustic mo del that we used in this thesis. The three

approaches to adaptation will b e further explored in Chapter 6 when we

consider the problem of adapting normal sp eech acoustic mo dels to whisp er

sp eech acoustic mo dels.
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CHAPTER 4

WHISPERED SPEECH CORPORA

Research in whisp ered sp eech has b een hamp ered by the lack of large pub-

licly available corp ora. A carefully organized and systematically constructed

corpus is not only a valuable resource; it is a necessary precursor to any sort

of meaningful work.

Two di�erent corp ora were collected to supp ort di�erent ob jectives in re-

search. The whisp ered TIMIT corpus (wTIMIT) is designed to satisfy the

unique needs of constructing large vo cabulary sp eech recognizers, and thus is

styled after p opular large sp eech corp ora used for this purp ose. The corpus

is designed to b e phonetically balanced, and su�ciently large to supp ort the

statistics needed for training acoustic mo dels in sp eech recognition.

The second corpus, the whisp ered Mo di�ed Rhyme Test, is designed to help

us understand some limits in whisp er communication, and thus resembles

corp ora used in intelligibility tests. The Mo di�ed Rhyme Test was sp eci�cally

chosen as it is a widely-recognized test of sp eech channel intelligibility [165].

4.1 The Whisp ered TIMIT Corpus

The whisp ered TIMIT corpus is mo deled after the TIMIT corpus [166], com-

monly used to study automatic recognition of phonemes. It is a systemat-

ically organized collection of paired whisp ered and sp oken utterances pro-

duced by the several sp eakers. Collection pro ceeded in two phases - the �rst

phase consists of utterances from 20 Singap orean sp eakers, the second phase

consists of utterances from 28 North American sp eakers. This resulted in

two subsets that di�er only in accent. Detailed information on the sp eakers

of each subset is shown in Tables 4.1 and 4.2.

All recordings were made in an audiometric b o oth using an MX-2001 di-

rectional condenser microphone. The microphone was adjusted to b e 6 inches
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sub ject id gender age languages sub ject id gender age languages

001 F 25-30 EN,MA 011 M 20-25 EN,MA

002 F 20-25 EN,MA 012 M 20-25 EN,MA

003 M 25-30 EN,MA 013 F 20-25 EN,MA

004 M 25-30 EN,MA,GE 014 M 20-25 EN,MA

005 M 20-25 EN,MA 015 M 15-20 EN,MA,JP

006 F 20-25 EN,MA 016 M 20-25 EN,MA

007 M 15-20 EN,MA 017 M 25-30 EN,MY

008 F 20-25 EN,MA 018 F 20-25 EN,MA

009 F 20-25 EN,MA 019 F 25-30 EN,MA

010 M 25-30 EN,MA,GE 020 M 25-30 EN,MA,JP

Table 4.1: Sp eakers in �rst phase collection (collected at NUS)

KEY: EN - English; MA - Mandarin; JP - Japanese; MY - Malayalam; GE -

German

sub ject id gender age languages sub ject id gender age languages

101 F 15-20 EN,SP 102 F 20-25 EN,TH

103 M 20-25 EN 104 F 15-20 EN,GE,YB

105 F 20-25 EN 106 M 20-25 EN,SP

107 M 15-20 EN 108 F 15-20 EN

109 F 15-20 EN,GJ 111 M 30-35 EN

112 F 15-20 EN,FR 115 M 30-35 EN

116 F 15-20 EN,FR,PO 117 M 20-25 EN

118 M 20-25 EN 119 M 15-20 EN

120 F 20-25 EN 121 M 20-25 EN

122 M 25-30 EN,JP 123 F 15-20 EN,GE

124 M 20-25 EN,SP 125 F 15-20 EN,GE

126 F 20-25 EN 127 F 30-35 EN

128 M 15-20 EN 129 F 35-40 EN

130 F 20-25 EN,SP,FR 131 M 15-20 EN

Table 4.2: Sp eakers in second phase collection (collected at UIUC)

KEY: EN - English; SP - Spanish; PO - Polish; TH - Thai; FR - French GE -

German JP - Japanese YB - Yoruba
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away from the sp eaker's mouth, and tilted a little away to avoid pu�s of air

hitting the microphone. During whisp er the sp eaker was told to move closer

to the microphone in order to obtain a b etter dynamic range for recording.

Each sp eaker was requested to b oth whisp er and read a set of 450 prompts.

These prompts were obtained from the phonetically balanced section of the

TIMIT corpus, and thus cover the most likely phonetic contexts encountered

in sp oken English. Prompts were alternately read and whisp ered in sets of

�fty so as to avoid sp eaker fatigue. As far as p ossible p o orly articulated

sentences, mispronounced words and dis�uent utterances were rejected and

re-recorded, but a minute numb er of such sentences still made it through

quality-control.

4.2 The Whisp ered Mo di�ed Rhyme Test Corpus

The mo di�ed rhyme test is an intelligibility test, designed to quantify sp eech

communication over sp oken channels. This is done by conducting a six-way

identi�cation test over a �fty sets of words. The words are all monosyllabic,

25 sets of them di�er only in the word-initial consonant, and the other 25

di�er only in the word-�nal p osition. These word-sets are tabulated in Tables

?? . Note that there are only 273 distinct words in the set, b ecause some words

are shared b etween sets.

Our corpus consists of each word of the set emb edded in the carrier sentence

�Can you say WORD now.� The data was collected in an anechoic chamb er

with a MX-2001 unidirectional condenser microphone. The microphone was

placed approximately 6 inches from the front of the sp eaker's mouth. A

total of 28 native North American sp eakers were recorded this way. A total

of 15180 utterances were left after removing noisy and dis�uent utterances.

4.3 Acoustic Analysis

Many di�erences b etween normal and whisp ered sp eech are well do cumented

in the literature. Most prominently, whisp er is commonly claimed to have

� reduced sp ectral tilt,

� longer syllabic lengths,
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bale gale male pale sale tale

bang fang gang hang rang sang

bark dark hark lark mark park

b eat feat heat meat neat seat

b ed fed led red shed wed

b ent dent rent sent tent went

b est nest rest test vest west

big dig �g pig rig wig

bill �ll hill kill till will

bit �t hit kit sit wit

b oil coil foil oil soil toil

b o ok co ok ho ok lo ok sho ok to ok

bun fun gun nun run sun

bust dust gust just must rust

came fame game name same tame

cold fold gold hold sold told

cop hop mop p op shop top

day gay may pay say way

den hen men p en ten then

din �n pin sin tin win

dip hip lip rip sip tip

eel feel heel keel p eel reel

got hot lot not p ot tot

jaw law paw raw saw thaw

kick lick pick sick tick wick

Table 4.3: List of Word-Initial Question Sets in the Mo di�ed Rhyme Test
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bad bath back ban bass bat

cud cud cu� cup cuss cut

did dig dill dim din dip

dub dud dung dug duck dun

�b �g �ll �n �t �zz

kid king kick kill kin kit

mad math man map mass mat

pad path pack pan pass pat

pig pick pill pin pip pit

pub pu� puck pun pup pus

sad sag sack sap sass sat

sub sud sung sum sun sup

tab tang tack tam tan tap

b ead b each b eak b eam b ean b eat

bu� bug buck bun bus but

cake came cane cap e case cave

lace lake lame lane late lay

pace page pale pane pave pay

race rake rate rave raze ray

safe sake sale same sane save

seed seethe seek seem seen seep

sing sick sill sin sip sit

heave heath heal heap hear heat

p eace p each p eak p eal p eas p eat

tease teach teak teal team tear

Table 4.4: List of Word-Final Question Sets in the Mo di�ed Rhyme Test
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(a) Normal Sp eech

(b) Whisp er Sp eech

Figure 4.1: Sp ectrograms of Normal and Whisp ered Sp eech.

� altered (usually raised) formant p ositions.

In this section we describ e some measurements made of the acoustic signal

to supp ort these claims.

4.3.1 Waveform and Sp ectrogram Di�erences

Figure 4.1 shows the waveform and wide-band sp ectrogram of normally sp o-

ken and whisp ered versions of the same utterance: �The surplus sho es were

sold at a discount price.� Whisp ered sp eech can b e characterized temp orally

by the sudden bursts in the signal and noise-like transients. From the sp ec-
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trogram, we observe that formants are less sp ectrally p eaked and striations

typically asso ciated with glottal vibration are absent.

4.3.2 Reduced Sp ectral Tilt

The sp ectral quality of sp eech can b e characterized by its long term average

sp ectrum (LTAS) - this is computed by averaging the magnitude squared of

sp ectral bins obtained from a regularly windowed Discrete Fourier Transform

of the signal. In other words, the sp ectral bins

Hk =
1

M

MX

m=1

jDF Tk(xn+ mT wn )) j2

=
1

M

MX

m=1

j
NX

n=1

xn+ mT wne
� � n � k

N j2; (4.1)

where M is the numb er of overlapping windows of the signal, T is the window

step, and wn is a suitable windowing function of size N. For our computation,

T was chosen to b e

N
4 , N is 4096 to b e su�ciently wideband. At a sampling

rate of 16 KHz, this gives a frequency resolution of around 2 Hz a bin.

The LTAS of whisp ered and normal sp eech from a single male and a single

female sp eaker are contrasted in Figures 4.2 and 4.3. There is little di�erence

in their general shap e b etween the sp ectra for di�erent genders. Normal

sp eech has a much stronger energy in the low frequency bands as opp osed to

high frequency bands - it has a greater sp ectral tilt. This is readily explained

by the glottal excitation in normal sp eech much more energetic in the low

pass regions.

A more detailed lo ok at LTAS for each phoneme is given in the app endix.

These plots were averaged over the part of the corpus with North American

accent as well as for Singap orean accent.

4.3.3 Formant Shift in Vowels

We to ok measurements of the �rst three formants of three vowels /a,i,u/

found in the same context from the wtimit corpus. Two utterances contain-

ing these vowels were drawn from every sp eaker in the corpus. The �rst, �A

huge p ower ([p a w ]) outage rarely ([r ær i ])�, provided the /a,i/ vowels,
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(a) Male Sp eaker

(b) Female Sp eaker

Figure 4.2: Log-Sp ectral Plots for Whisp ered and Normal Sp eech. Lighter

line corresp onds to whisp er, darker line corresp onds to normal sp eech.
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(a) Male Sp eaker

(b) Female Sp eaker

Figure 4.3: Log-Sp ectral Plots for Whisp ered and Normal Sp eech. Lighter

line corresp onds to whisp er, darker line corresp onds to normal sp eech.
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and the second utterance, �Do es Hindu [h i n d u ] ideology worship cows�

,provided /u/. Formant measurements were aided with help of the computer

program Praat [167]. Temp oral lo cations were found by visual insp ection

of the sp ectrogram followed by audio veri�cation. In cases where the algo-

rithm failed to track formants correctly, manual correction was applied. The

formant tracks for whisp er tend to b e broader, but they also tend to b e far

weaker. Occasionally formant tracks fall b elow a nominal amplitude and dis-

app ear. Some estimation was applied to get reasonable values, but in cases

where no reasonable estimate made sense the sp eech token was discarded.

Formant frequencies are tabulated in app endix A. In �uent sp eech we

have coarticulation e�ects and mild mispronunciations due to lazy articula-

tion, thus we may not necessarily get canonical values. However, cursory

examination of the data suggests an upward shift of the �rst formant with

whisp er, comcomitant with the apparent shortening of the vo cal tract. The

second and third formant shifts dep end on the vowel used.

We compute the change in frequencies of the formants as we go from nor-

mal to whisp ered sp eech for each sp eaker. These values are plotted in the

histograms shown in Figure 4.4. We can see that on average F1 shifts up-

wards by 200 Hz for all three vowels. This upward shift is also observed for

/a/, but the b ehavior of F2 and F3 do es not app ear to change on average

for /i,u/. Our results are consistent with �ndings from [68].

4.3.4 Longer Syllabic Length

Forced alignment using our trained acoustic mo dels was used to phonetically

segment the corp ora. The average length were computed from the resulting

transcription. As shown in Figure 4.5 whisp ered phonemes tend to b e longer.

This also means that syllables for whisp ered sp eech in our corpus tend to b e

longer, as is rep orted by many others in the literature.
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Figure 4.4: Change in Formant Frequencies going from Normal to Whisp er

Sp eech.

Horizontal axis is Frequency Change (Hz), and vertical axis is counts.
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(a) Consonants

(b) Vowels

Figure 4.5: Average Increase in Whisp ered Phone Length.
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CHAPTER 5

THE PERCEPTION OF WHISPERED

SPEECH

How well do es whisp ering work as a means of communication? Tartter [75]

provides confusion matrices of �nonsense� whisp ered CV syllables. Our �rst

exp eriment complements Tartter's by measuring accuracy of correct identi-

�cation in word-level contexts.

5.1 Exp eriment Design of the Whisp ered Mo di�ed

Rhmye Test

The test material was drawn from 27 sp eakers of the wMRT corpus. From

this, 20 test sessions, each session consisting of 600 questions, were con-

structed. Each question corresp onded to one of the 50 p ossible word sets

of wMRT, with one of the six words in the word set as the correct answer,

and could either b e read or whisp ered. Each session consists of utterances

drawn at random from the entire corpus, but care was taken to ensure that

b oth the numb er of male and female sp eakers, and the numb er of whisp ered

and unwhisp ered utterances were balanced. As far as p ossible the utterances

from di�erent sets were mutually exclusive � almost all utterances were only

used once in the testing. Utterances were normalized by ro ot mean squared

p ower, and care taken to ensure that no clipping o ccurred. The order of pre-

sentation of question sets in the session was completely randomized during

playback.

A total of 10 male and 10 female listeners, one for each test session, served

as sub jects in the p erceptual exp eriment. These sub jects were paid for their

time. Every sub ject was a native sp eaker of English from around the mid-

western region and mostly from the age of 18 to 25; they had at least a high

scho ol education. The tests were conducted in an audiometric b o oth using a

custom software program.
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(a) Intro duction Screen (b) Playback of Utterances

(c) Presentation of Resp onse Choices (d) Ending Screen

Figure 5.1: Screenshots from Testing Program

Before the start of testing, each sub ject would b e briefed on the test pro-

cedure and taught how to use the testing software. Sub jects were also told

to b e as accurate as p ossible, and high accuracy would b e rewarded with

b onus payment. The software, shown in Figure 5.1, played each utterance

in turn and then displayed a selection screen with six buttons � one for each

word in the question set. Sub jects would listen through a pair of headphones,

and pick one of the buttons in resp onse. As shown in Figure 5.1, sub jects

were allowed to replay the utterance as many times as needed to identify the

target word. They were also allowed to go back to the previous utterance in

case of a misclick, and to adjust the volume of the presentation if it is to o

loud or to o soft.
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Normal Sp eech Whisp ered Sp eech

Sp eaker ID Word-Initial Word-Final Word-Initial Word-Final

103 (M) 98.319 92.806 95.000 91.057

105 (F) 100.000 94.545 98.131 85.455

106 (F) 97.059 98.925 92.381 98.780

107 (M) 100.000 96.748 92.105 92.647

108 (M) 100.000 97.581 96.377 90.909

109 (M) 100.000 99.225 98.425 96.639

110 (F) 100.000 100.000 98.246 96.703

111 (F) 100.000 94.792 97.980 88.421

112 (M) 100.000 99.107 92.248 95.935

113 (F) 100.000 100.000 94.231 97.938

114 (F) 100.000 99.083 100.000 94.262

115 (M) 100.000 100.000 95.082 97.458

117 (M) 100.000 100.000 97.080 93.333

118 (M) 100.000 99.200 96.522 95.614

119 (M) 100.000 99.231 95.690 89.583

120 (F) 100.000 100.000 100.000 99.057

121 (F) 100.000 95.652 92.857 86.916

122 (F) 100.000 100.000 92.857 100.000

123 (F) 100.000 100.000 97.778 97.980

124 (F) 100.000 98.095 97.959 97.170

125 (F) 100.000 97.826 94.048 90.909

126 (F) 100.000 97.872 100.000 94.949

127 (M) 100.000 95.455 96.899 96.800

128 (M) 100.000 96.610 96.970 84.259

129 (F) 100.000 94.624 97.938 95.349

130 (M) 100.000 98.601 94.595 92.969

131 (F) 100.000 100.000 95.833 92.308

Table 5.1: Per-Sp eaker wMRT Identi�cation Accuracies.

5.2 Human Perception in the Whisp ered Mo di�ed

Rhyme Test

Overall results were 98:9% accuracy on unwhisp ered sp eech, and 94:9% on

whisp ered sp eech. It should b e noted that where we do not have 100% accu-

rate identi�cation with phonated sp eech, any remaining error could b e due to

any numb er of factors such as varying accent, varying level of articulateness

of sp eakers, or varying p erceptual capabilities of listeners. Other factors such

as sp eaker or listener fatigue may come into play, but this should b e ame-

liorated by the randomized testing as well as the relatively short duration,
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Normal Sp eech Whisp ered Sp eech

Listener ID Word-Initial Word-Final Word-Initial Word-Final

001 (M) 100.000 98.000 96.667 95.333

002 (F) 100.000 96.667 95.333 98.000

003 (M) 100.000 94.667 96.000 91.333

004 (F) 100.000 96.000 96.667 94.000

005 (F) 100.000 98.667 97.333 96.000

006 (F) 100.000 97.333 95.333 86.667

007 (F) 100.000 100.000 96.667 98.000

008 (F) 100.000 98.000 94.631 94.667

009 (M) 100.000 99.333 94.667 90.000

010 (F) 98.667 98.000 98.667 91.333

011 (F) 100.000 96.667 93.333 91.333

012 (F) 99.333 98.000 95.333 95.333

013 (M) 100.000 96.667 92.000 91.333

014 (F) 100.000 97.333 98.000 94.667

015 (M) 100.000 100.000 98.000 94.667

016 (M) 100.000 99.329 98.000 94.667

017 (M) 100.000 98.000 96.667 96.000

018 (M) 98.667 98.667 96.000 93.333

019 (M) 100.000 99.333 96.000 94.000

020 (M) 100.000 99.333 97.333 92.667

Table 5.2: Per-Listener wMRT Identi�cation Accuracies.

roughly one hour, of each test and recording session.

These e�ect of such factors are demonstrated clearly when examining iden-

ti�cation accuracies p er-sp eaker, shown in Table 5.1, and accuracies p er-

listener, shown in Table 5.2. A paired samples t-test using the accuracy

values p er sp eaker b etween di�erent sp eaking styles and di�erent context

lo cations was conducted, and found the di�erence in di�erent sp eaking style

and context to b e statistically signi�cant. Similarly, the di�erences in ac-

curacy p er listener were also found to b e statistically signi�cant. Overall

accuracies are summarized in Table 5.3. Our results indicate that Word-�nal

consonants app ear to b e more confusable than word-initial consonants. This

is unlikely to b e due to test design itself, as task-entropies for each case were

computed and found to b e highly similar. The identi�cation task for word-

initial di�erences was computed and found to b e 0.432 bits p er question; the

task entropy of word-�nal di�erences was found to b e 0.431 bits p er question.

As exp ected, whisp ered sp eech is less intelligible than phonated sp eech, but
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it is surprisingly not much worse.

Table 5.4 shows some of the most common confusions that o ccur in the

wMRT. Counts of one and less were discarded. The most common errors

in whisp er are /b/ ! /p/ confusions: there are 14 counts of bark ! park ,

13 of big ! pig , as opp osed to 5 counts of pig ! big and 3 counts of

pale ! bale. Note that there were a total of twenty presentations allowing

each typ e of confusion (one p er listener). Clearly, /b/ ! /p/ confusions are

more common than the reverse. Perhaps in whisp er, the plosives resemble

the prototypical unvoiced versions more and thus sub jects tend to pick the

unvoiced version. Yet some identi�cation seems p ossible, esp ecially for /d/

and /g/ where at least half of the voiced plosives are correctly identi�ed (e.g

only 3 out of 20 for dip ! tip ). This supp orts the idea that some secondary

cues are used b esides voicing.

The errors were further analyzed and tagged according to the typ e of con-

fusion asso ciated with them, b e it voicing-related, manner-related or place-

related. These categories are not mutually exclusive, but multiply tagged

errors are uncommon. The counts of each typ e of error are shown in Fig-

ure 5.2. The p ercentages are computed out of the total numb er of times

the p ossible error could have o ccurred. Errors for normal sp eech tend to b e

largely place-related, whereas errors in whisp ered sp eech tend to b e largely

voicing related. In the word-�nal p ositions, there are a substantial numb er

of manner and place-related errors in whisp er, much more than for word-

initial p osition. In other words, the errors in the word-initial p osition are

largely voicing related. This pattern of errors seems to b e reversed in normal

sp eech, as there are more voicing related errors in the word-�nal p osition.

This seems to suggest that in whisp ered sp eech di�erent acoustic cues convey

information in the word-initial and word-�nal p osition.

We lo ok at the error confusions asso ciated with the stops in the word-

initial and word-�nal p ositions. Normalized confusion matrices for whisp ered

Sp eaking Style (%)

Normal Whisp er

Word-Initial 99.8 96.1

Word-Final 98.0 93.7

Table 5.3: Human Performance for Word-Initial and Word-Final Consonant

Recognition
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(a) Normal Sp eech, Word-Initial Context
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(b) Normal Sp eech, Word-Final Context
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(c) Whisp ered Sp eech, Word-Initial Con-

text
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VOICING
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(9)
0.33%

0.93%
(11)(14)

1.08%

(64)
8.65%

0.23%
(25)

0.82%
(15)

(d) Whisp ered Sp eech, Word-Final Context

Voicing-related Manner-related Place-related

Normal Word-Initial 0.026% (2) 0.018% (2) 0.027% (3)

Word-Final 0.319% (19) 0.184% (14) 0.316% (26)

Whisp er Word-Initial 1.326% (101) 0.259% (29) 2.079% (32)

Word-Final 1.644% (98) 0.750% (57) 0.534% (44)

Figure 5.2: Categories of Errors found in Perceptual Tests.
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Normal Sp eech Whisp ered Sp eech

lane ! lay - 3 bark ! park - 14 big ! pig - 13 bale ! pale - 12 gold ! cold - 11

heap ! heat - 3 din ! tin - 8 cud ! cut - 8 p eas ! p eace - 6 game ! came - 6

cud ! cut - 3 den ! ten - 6 tab ! tap - 5 sub ! sup - 5 save ! safe - 5

seem ! seen - 2 sat ! sad - 5 pig ! big - 5 b ead ! b eat - 5 b ead ! b ean - 5

sad ! sat - 2 tin ! din - 4 sup ! sub - 4 dug ! duck - 4 came ! game - 4

pub ! pup - 2 seed ! seen - 3 sad ! sat - 3 raze ! race - 3 pay ! pane - 3

pane ! pay - 2 pat ! pad - 3 park ! bark - 3 pane ! pay - 3 lane ! lame - 3

pad ! pat - 2 dud ! dun - 3 dip ! tip - 3 dip ! did - 3 dent ! tent - 3

dung ! dun - 2 bug ! buck - 3 vest ! b est - 2 tip ! dip - 2 sud ! sun - 2

bat ! bad - 2 sing ! sin - 2 sin ! sit - 2 seethe ! seed - 2 seem ! seen - 2

ban ! bad - 2 same ! sane - 2 sag ! sack - 2 race ! raze - 2 pat ! pan - 2

mat ! mad - 2 kit ! kid - 2 kid ! kit - 2 heave ! heath - 2

heat ! heap - 2 heap ! heat - 2 fold ! hold - 2 fang ! bang - 2

dung ! dun - 2 did ! din - 2 cut ! cud - 2 cold ! gold - 2

cane ! came - 2 but ! bun - 2 b eat ! b ean - 2 b eat ! b ead - 2

bath ! bad - 2 ban ! bad - 2 bad ! ban - 2

Table 5.4: Most Common Confusions in Human wMRT Perception

sp eech are are shown in Table 5.5 for stops: similarly for nasals (Table 5.6),

fricatives and a�ricates (Table 5.7). Since the MRT task involves a six-way

forced choice over varying groups of consonants, care has to b e taken when

normalizing the table. Each diagonal entry of the table corresp onds to the

probability of correct identi�cation under all contexts. Each o�-diagonal

entry corresp onds to the probability

P� ! �̂ =
n� ! �̂

N � ! �̂

; (5.1)

where n� ! �̂ is the numb er of times the stimulus phoneme � gets recognized

as �̂ , and N � ! �̂ is the numb er of times the question set actually allows the

particular confusion to b e made. Note that with this de�nition, the row sums

will not add to one due to di�erent counts in the denominator for di�erent

confusions. Some confusions simply do not o ccur in the data, as no such

word pairs exist. An example of this would b e having all presentations of the

stimulus �cut� not having �but� as any of the allowed resp onses; in this case

/k/ ! /b/, like other such entries, would b e marked with an �X.� The cor-

resp onding probabilities for normal sp eech indicate overwhelmingly correct

resp onses and are uninteresting to repro duce here. The � # � token is used to

represent collectively all other phonemes b esides those explicitly named in
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(a) Perceptual, Whisp ered, Word-Initial Confusions.

resp onse /p/ /t/ /k/ /b/ /d/ /g/ #

stimuli

/p/ 0.96 0.00 0.00 0.13 0.00 0.00 0.00

/t/ 0.01 0.96 0.00 0.01 0.10 0.00 0.00

/k/ 0.00 0.00 0.97 0.00 X 0.15 0.00

/b/ 0.65 0.00 0.00 0.86 0.00 0.00 0.00

/d/ 0.00 0.25 X 0.00 0.88 0.00 0.00

/g/ 0.00 0.00 0.42 0.00 0.03 0.89 0.00

# 0.00 0.00 0.00 0.01 0.00 0.00 0.28

(b) Perceptual, Whisp ered, Word-Final Confusions.

resp onse /p/ /t/ /k/ /b/ /d/ /g/ #

stimuli

/p/ 0.91 0.04 0.01 0.08 0.05 0.00 0.00

/t/ 0.02 0.91 0.00 0.00 0.11 0.01 0.01

/k/ 0.01 0.02 0.97 0.02 0.00 0.04 0.00

/b/ 0.18 0.00 0.00 0.88 0.00 0.00 0.00

/d/ 0.01 0.11 0.00 0.00 0.72 0.00 0.04

/g/ 0.00 0.01 0.09 0.00 0.00 0.71 0.02

# 0.00 0.01 0.00 0.00 0.02 0.00 0.27

Table 5.5: Perceptual Error Confusions for Stops.

(a) Perceptual, Whisp ered, Word-Initial

Confusions.

resp onse /m/ /n/ /­/ #

stimuli

/m/ 1.00 0.00 X 0.00

/n/ 0.00 0.98 X 0.00

/­/ X X X X

/#/ 0.00 0.00 X 0.18

(b) Perceptual, Whisp ered, Word-Final Con-

fusions.

resp onse /m/ /n/ /­/ #

stimuli

/m/ 0.96 0.03 0.00 0.00

/n/ 0.04 0.95 0.00 0.01

/­/ 0.00 0.04 0.96 0.00

# 0.01 0.02 0.00 0.20

Table 5.6: Perceptual Error Confusions for Nasals.
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(a) Perceptual, Whisp ered, Word-Initial Confusions.

resp onse /f/ / T/ /s/ / S/ / Ù/ /v/ /ð/ /z/ / Z/ / Ã / #

stimuli

/f/ 0.97 X 0.00 0.00 X X X X X X 0.01

/ T/ X 1.00 0.00 X X X X X X 0.00 0.00

/s/ 0.00 0.00 1.00 X X X X X X 0.00 0.00

/ S/ 0.00 X X 1.00 X X X X X X 0.00

/ Ù/ X X X X X X X X X X X

/v/ X X X X X 0.90 X X X X 0.02

/ð/ X X X X X X 0.95 X X X 0.01

/z/ X X X X X X X X X X X

/ Z/ X X X X X X X X X X X

/ Ã / X 0.00 0.00 X X X X X X 0.97 0.01

# 0.00 0.00 0.00 0.00 X 0.01 0.00 X X 0.00 0.21

(b) Perceptual, Whisp ered, Word-Final Confusions.

resp onse /f/ / T/ /s/ / S/ / Ù/ /v/ /ð/ /z/ / Z/ / Ã / #

stimuli

/f/ 0.99 X 0.00 X X 0.05 X X X X 0.00

/ T/ X 0.93 0.00 X X 0.00 X X X X 0.02

/s/ 0.00 0.00 0.97 X 0.00 0.02 X 0.05 X 0.00 0.00

/ S/ X X X X X X X X X X X

/ Ù/ X X 0.00 X 1.00 X X 0.00 X X 0.00

/ v/ 0.25 0.10 0.00 X X 0.91 X 0.05 X 0.00 0.00

/ð/ X X X X X X X X X X X

/ z/ X X 0.23 X 0.03 0.00 X 0.88 X X 0.00

/ Z/ X X X X X X X X X X X

/ Ã / X X 0.00 X X 0.00 X X X 1.00 0.00

# 0.00 0.00 0.00 X 0.00 0.00 X 0.00 X 0.00 0.21

Table 5.7: Perceptual Error Confusions for Fricatives and A�ricates.

the table. Nasals, fricatives and a�ricates are overwhelmingly correct. For

plosives in the word-initial p osition, and for fricatives and a�ricates in the

word-�nal p osition, confusions tend to o ccur with voiced/unvoiced minimal

pairs. There is also a biased tendency for voiced phonemes to b e confused

as voiceless, as opp osed to voiceless with voiced. These observations are in

agreement with Tartter's observations [75]. These qualities are still dominant

with word-�nal plosives, but other typ es of errors also o ccur.

One thing of interest is to compute an accuracy of correct voicing transmis-

sion. This can b e done by considering question sets for which the contrastive
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Voicing Transmission (in %)

Context /b/ /d/ /g/ /p/ /t/ /k/

Word-Initial 35.0 75.0 57.5 85.0 86.7 90.0

Word-Final 81.7 88.6 91.3 91.7 84.2 95.0

/f/ /v/ /s/ /z/

Word-Final 95.0 75.0 95.0 77.5

Table 5.8: Accuracy of Voicing Feature Transmission computed from

wMRT result.

phoneme exists as one of the available choices (e.g. presenting the token

put with but as one of the available choices). Accuracy was computed only

with data from such question sets, and other data were ignored. Mistakes

which did not alter the voicing feature (e.g. /but/ ! /gut/) were counted

as correct. For the word-initial p osition, only plosives were involved in such

question sets, so our statistics are only valid when considering plosives. The

word-�nal p osition includes some additional phonemes such as /f/, /v/, /s/

and /z/. Table 5.8 shows the p ercentage of accurate transmission of voicing

p er phoneme. The overall accuracy of transmission is 71:528% for plosives

in the word-initial p osition, and 90:526% in the word-�nal p osition. Trans-

mission of voicing in the word-�nal p osition is 87:482% when the fricatives

are included. Overall accuracy of voicing transmission is 79:505%. Our �g-

ures are higher than the �gure of 64% obtained by Tartter [75], but p erhaps

this could b e explained by the greater amount of information that is con-

veyed with the full word contexts involved in our recognition task. These

results also rea�rm that unvoiced plosives more accurately convey voicing

than voiced plosives.

5.2.1 E�ect of Gender

In this set of analyses we consider how gender a�ects identi�cation accuracy.

Table 5.9 shows overall identi�cation accuracies for each gender of sp eaker

and listener, for normal and whisp ered sp eech in the word-inital and word

�nal contexts. In order to investigate if the di�erences were signi�cant, an

indep endent samples t-test was conducted on accuracy values obtained for in-

dividual listeners. The test was conducted for three di�erent pairs of groups,

dep ending on the listener gender, sp eaker gender and whether there was a
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(a) Normal Sp eech, Word-Initial Context

Listener Gender

Sp eaker Gender Male Female

Male 99.869 (765) 99.872 (783)

Female 99.864 (735) 99.721 (717)

(b) Normal Sp eech, Word-Final Context

Listener Gender

Sp eaker Gender Male Female

Male 98.153 (758) 97.613 (754)

Female 98.516 (741) 97.721 (746)

(c) Whisp ered Sp eech, Word-Initial Context

Listener Gender

Sp eaker Gender Male Female

Male 95.269 (782) 96.016 (728)

Female 97.075 (718) 96.239 (771)

(d) Whisp ered Sp eech, Word-Final Context

Listener Gender

Sp eaker Gender Male Female

Male 92.818 (738) 93.387 (741)

Female 93.832 (762) 94.598 (759)

Table 5.9: Overall Identi�cation Accuracy for Di�erent Genders. Numb ers

in brackets are the total numb er of questions.

gender mismatch.

The analysis found that accuracy di�erences b etween di�erent listener gen-

der groups was not signi�cant for b oth normal and whisp ered sp eech in

b oth word-initial and word-�nal p ositions. Accuracy di�erences for when

the sp eaker and listener gender were mismatched and when they were not,

were insigni�cant.

We p erformed another analysis, this time based on the accuracies com-

puted p er sp eaker. Accuracy di�erences b etween di�erent listener and sp eaker

groups were found to b e insigni�cant. Di�erences in p er sp eaker accuracy

when listener and sp eaker genders are matched or mismatched are also in-

signi�cant. Our results suggest that there is no statistical di�erence in the

articulation of male and female sp eakers. However, there could b e a slight

di�erence in p erception b etween male and female listeners, although their

p erformance is neither statistically b etter nor worse when listening to nor-

mal and whisp ered sp eech of the opp osite gender.
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COULD NOWSAYYOU

LOWG D

SOLD

FOLD

COLD

TOLD

HOLD

GOLD

K UH D

$WORD=hold|cold|told|fold |sol d|go ld;

(<SIL> could you say $WORD now <SIL>)

Figure 5.3: Example of Regular Grammar for a wMRT Question Set.

5.3 Machine Recognition of wMRT sentences

The wTIMIT trained acoustic mo dels (see next chapter) were used in an

analogous way to the p erceptual tests in order to determine machine p er-

formance on the same task. These acoustic mo dels were context-dep endent

clustered triphone mo dels. This approach meant that we had an acous-

tic mo del indep endently trained from the test sentences in wMRT. Sp eech

recognition was p erformed using an appropriately constructed regular gram-

mar that contained the carrier sentence and p ermitted the appropriate word

choices. An example grammar is shown in Figure 5.3.

Exactly the same test sets as those presented to human listeners were used.

Accuracy values shown in Table 5.10 do not suggest much worse p erformance

in whisp ered sp eech compared to non-whisp ered sp eech for either machine or

human recognition. Machine p erformance is much worse than human, though

more could b e done to improve the sp eech recognition, e.g. by p erforming
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Sp eaking Style (%)

Normal Whisp er

Human 98.8 94.8

ASR 80.9 77.5

Table 5.10: Machine and Human Performance for Whisp ered and

Unwhisp ered Sp eech Recognition

sp eaker adaptation.

We can p erform the same analysis on the errors as we did for the p erceptual

tests. The errors made by the ASR system were categorized and are shown in

Figure 5.4. Non voicing-related errors now o ccur far more often, and place-

related errors seem to o ccur very often. There app ears to b e a consistent

pattern of errors that o ccur with b oth normal sp eech and whisp ered sp eech

� the system do es not app ear to make mistakes di�erently for either typ e of

sp eech.

Tables 5.5, 5.6 and 5.7 show the confusion patterns for the various man-

ner categories. As can b e seen there is much less structure compared with

the p erceptual results. Notably, the bias in confusions preferring a [voiced]

! [voiceless] typ e of errors is absent. However, errors still app ear to b e

chie�y with resp ect to the voicing distinction. Finally, with the word-�nal

stops, errors o ccur along one error dimension, either voicing or place, and

combination typ e errors app ear to b e rarer.

An analysis of voicing transmission now completes our comparison with

the p erceptual results. These �gures are tabulated in Table 5.11 Voicing

is transmitted with of 54:931% for word-initial plosives, and 63:330% for

word-�nal plosives. Overall voicing transmission in the word-�nal p osition is

64:258%, and overall accuracy of voicing transmission is 59:094%.

The pattern of errors is also substantially di�erent from p erceptual errors.

Althought ASR accuracy is lower than human accuracy on average, it is not

true that humans outp erform ASR for every phoneme.

5.4 The E�ect of Context in Communication

The p erceptual and ASR results give a go o d idea of how whisp ered sp eech

carries across information at word-level contexts. Our result is comparable to
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MANNER PLACE

VOICING

0.28% 4.21%

6.35%2.66%
(33) (94)

(103)
3.18%

0.58%
(28)

(4) (37)

18.06%
(65)

(a) Normal Sp eech, Word-Initial

MANNER PLACE

VOICING

2.63% 18.59%

0.91%

(383)(41)
(160)
5.34%

(34)

(104)
5.72% 10.55%

(116)

(215)
29.05%

(b) Normal Sp eech, Word-Final

MANNER PLACE

VOICING

1.86%
2.25%

5.07%
0.70%

40.56%
(146)

(23)
(73)

(75)
(34)

(13)
0.90%

(52)
5.91%

(c) Whisp ered Sp eech, Word-Initial

MANNER PLACE

VOICING

1.99%
(31)

15.11%
(310)

(111)
3.71%

1.29%

1.87% 8.64%

(240)
32.61%

(34) (95)

(48)

(d) Whisp ered Sp eech, Word-Final

Voicing-related Manner-related Place-related

Normal Word-Initial 1.782% (134) 1.561% (168) 2.510% (262)

Word-Final 6.346% (469) 3.355% (339) 7.009% (693)

Whisp er Word-Initial 3.260% (245) 1.329% (143) 2.242% (234)

Word-Final 5.642% (417) 2.216% (224) 5.709% (564)

Figure 5.4: Categories of Errors found ASR wMRT.

Voicing Transmission (in %)

Context /b/ /d/ /g/ /p/ /t/ /k/

Word-Initial Accuracy 60.0 38.8 92.5 53.3 65.0 20.0

Word-Final Accuracy 66.7 21.4 46.1 55.0 92.5 98.3

/f/ /v/ /s/ /z/

Word-Final Accuracy 80.0 60.0 100.0 22.5

Table 5.11: Transmission of Voicing Distinction computed from wMRT

ASR result
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resp onse /p/ /t/ /k/ /b/ /d/ /g/ #

stimuli

/p/ 0.85 0.01 0.00 0.47 0.01 0.00 0.01

/t/ 0.05 0.69 0.18 0.09 0.35 0.12 0.01

/k/ 0.02 0.07 0.69 0.03 X 0.80 0.02

/b/ 0.38 0.01 0.01 0.91 0.00 0.00 0.00

/d/ 0.14 0.41 X 0.06 0.62 0.17 0.00

/g/ 0.00 0.15 0.05 0.01 0.07 0.89 0.00

# 0.02 0.01 0.00 0.02 0.02 0.02 0.27

(a) ASR, Whisp ered, Word-Initial.

resp onse /p/ /t/ /k/ /b/ /d/ /g/ #

stimuli

/p/ 0.69 0.19 0.14 0.43 0.02 0.00 0.01

/t/ 0.03 0.76 0.18 0.00 0.06 0.10 0.02

/k/ 0.07 0.34 0.72 0.00 0.06 0.01 0.01

/b/ 0.30 0.65 0.08 0.43 0.00 0.23 0.03

/d/ 0.03 0.70 0.11 0.33 0.22 0.14 0.06

/g/ 0.00 0.23 0.50 0.00 0.08 0.26 0.10

# 0.03 0.07 0.01 0.01 0.04 0.02 0.25

(b) ASR, Whisp ered, Word-Final.

Figure 5.5: Error Confusions for Stops from ASR wMRT.

resp onse /m/ /n/ /­/ #

stimuli

/m/ 0.93 0.25 X 0.01

/n/ 0.15 0.88 X 0.02

/­/ X X X X

# 0.01 0.01 X 0.18

(a) ASR Word-Initial Confusions.

resp onse /m/ /n/ /­/ #

stimuli

/m/ 0.69 0.28 0.00 0.02

/n/ 0.34 0.73 0.06 0.03

/­/ 0.00 0.14 0.85 0.00

# 0.02 0.04 0.00 0.20

(b) ASR Word-Final Confusions.

Figure 5.6: Error Confusions for Nasals from ASR wMRT.
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resp onse /f/ / T/ /s/ / S/ / Ù/ /v/ /ð/ /z/ / Z/ / Ã / #

stimuli

/f/ 0.94 X 0.03 0.00 X X X X X X 0.01

/ T/ X 0.80 0.05 X X X X X X 0.00 0.05

/s/ 0.02 0.00 0.98 X X X X X X 0.00 0.00

/ S/ 0.00 X X 1.00 X X X X X X 0.00

/ Ù/ X X X X X X X X X X X

/v/ X X X X X 0.65 X X X X 0.07

/ð/ X X X X X X 0.30 X X X 0.14

/z/ X X X X X X X X X X X

/ Z/ X X X X X X X X X X X

/ Ã / X 0.00 0.00 X X X X X X 0.93 0.02

# 0.01 0.07 0.00 0.00 X 0.00 0.00 X X 0.00 0.21

(a) Whisp ered, Word-Initial.

resp onse /f/ / T/ /s/ / S/ / Ù/ /v/ /ð/ /z/ / Z/ / Ã / #

stimuli

/f/ 0.88 X 0.02 X X 0.20 X X X X 0.02

/ T/ X 0.46 0.00 X X 0.80 X X X X 0.09

/s/ 0.02 0.00 0.99 X 0.00 0.00 X 0.00 X 0.00 0.00

/ S/ X X X X X X X X X X X

/ Ù/ X X 0.00 X 0.98 X X 0.00 X X 0.00

/v/ 0.40 0.00 0.20 X X 0.65 X 0.00 X 0.00 0.04

/ð/ X X X X X X X X X X X

/z/ X X 0.78 X 0.07 0.00 X 0.55 X X 0.01

/ Z/ X X X X X X X X X X X

/ Ã / X X 0.50 X X 0.00 X X X 0.50 0.00

# 0.02 0.02 0.00 X 0.05 0.03 X 0.00 X 0.07 0.20

(b) Whisp ered, Word-Final.

Figure 5.7: Error Confusions for Fricatives and A�ricates from wMRT

ASR.
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X Conflation
Filter

Y

Speech Tokens
Original 

Speech Tokens
Distorted

Figure 5.8: Filtering Approach to Estimate Information Transmitted

Tartter's [75]. In the p erceptual results, a similar bias to mistake [voiced] !

[voiceless] was observed. Machine recognition makes di�erent mistakes from

humans, and overall, is worse. Interestingly, limiting the listener resp onses

to valid word choices seems to help machine recognition reach the level seen

with nonsense CVs. This seems to have a greater e�ect in human p erception

� limited task entropy helps recognition even more. Tarttar's result gives us

an accuracy of 64% for nonsense CVs; this �gure go es up to 94% when word

contexts are considered.

Given this result it is uncertain whether or not it is necessary for sp eci�c

distinctive features to b e completely correctly conveyed. The question of how

much a distinctive feature contributes to discriminating words is addressed

by the concept of functional load [168]. Early metho ds to quantify this

involve counting the numb er of minimal pairs having the particular feature

opp oisition, which can b e skewed dep ending on the probability of o ccurrence

of the minimal pairs. Ho ckett provides an information theoretic approach

which is also adopted by Carter [169] and Surendran [170, 171], which we will

paraphrase here. The approach works by measuring the entropy di�erence

b etween text from a �ltered and un�ltered language.

5.4.1 Entropy Loss in Filtered Sp eech

We b egin by considering a hyp othetical �lter, which con�ates contrastive

phonemes for a particular distinctive feature. For example, the con�ation

�lter might con�ate /b/ and /p/. This is mo deled in Figure 5.8. Here,

X represents a random pro cess which generates a sequence of sp eech to-

kens, sp eci�cally phonemes. Since this system is deterministic, the condi-

tional entropy H (YjX ) is 0. Applying the identity for mutual information
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I (X ; Y) = H (X ) � H (X jY) = H (Y) � H (Y jX ) , gives us the amount of

information lost by the con�ation of /b/ and /p/ as

H (X jY) = H (X ) � H (Y) (5.2)

bits. In another sense, this quanti�es the information conveyed by having

the particular distinction. Supp ose we sample a sequence of tokens x from

the pro cess X . If we mo del X and Y with an appropriate generative mo del

trained from the corpus x , we can consider the di�erence b etween entropies

of those mo dels instead to b e an estimate of information transmitted in bits

H (X jY) �
log2 pX (x) � log2 pY (y)

n
; (5.3)

where pX (x) is the probability of token sequence x under the mo del X , and

n is the numb er of tokens in x . The functional load of the distinctive feature

is given by

F L(feature ) =
H (X ) � H (Y)

H (X )

=
H (X jY)
H (X )

� 100%; (5.4)

as a p ercentage of the bits p er token that are actually involved in transmitting

the feature con�ated out. This gives us a pro cedure to estimate the amount of

information transmitted by the contrastive pair, using the resp ective n-gram

mo dels trained from those pieces of data.

We pro cessed the APW segment of the English Gigaword corpus, and ob-

tained a unigram count of words. This word list was then used with the

Sequitur grapheme to phoneme algorithm [172] in order to pro duce a dic-

tionary of phonemic sp ellings. The algorithm was trained using the public

phonetic lexicon, cmudict , from CMU. Resubstituting all words in the cor-

pus with their phonemic sp ellings gave us a corpus of phonemic tokens to

work with. We now apply our pro cedure to the phonetized corp ora, using

di�erent con�ation �lters. First, all vowels were con�ated to a single token.

The SRI language mo deling to ols were then used with the original corpus

to compute an n-gram language mo del, from which the corpus cross-entropy

is computed. The con�ation �lter pro duces a distorted text, from which

a similar mo del is trained and a cross-entropy computed. The complexity
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of the language mo del used for computation, that is, the n of the n-gram,

relates to the length of the context we are studying. The numb er of bits

p er token needed to transmit the contrastive feature can b e computed from

the cross-entropy of the undistorted corpus computed with the undistorted

mo del. Dividing this by the cross-entropy of the undistorted corpus allows

us to �nd out what p ercentage of the information is carried by voicing.

Results for unigrams, bigrams and trigrams are summarized in Table 5.12.

The numb ers in parentheses are functional loads. We observe that our un-

igram cross-entropy for the baseline is similar to Shannon's value of 2.6 for

English [173]. Information transmitted by b eing able to distinguish various

phoneme pairs varies from phoneme to phoneme, with /d/ and /t/ b eing the

least informative among plosives, and /s/ and /z/ most informative among

fricatives and a�ricates. As the mo del complexity is increased the amount

of information conveyed is reduced; i.e. context e�ects reduce the need for

voicing distinctions to convey information. This is also illustrated by Figure

5.9, which shows how the numb er of bits required to transmit the language

is reduced as context length is increased. With context of 7 phone tokens,

voicing only conveys 0.407% of the information in the language. The results

seem to suggest that context may obviate all but 1% to 5% of the information

carried by voicing distinctions.

5.5 Discussion of Results

This chapter has presented results from p erceptual studies as well as machine

recognition results on the same task. Performance of humans at recognizing

words in whisp er app ear much b etter when compared with results on non-

sense CV identi�cation. There is strong evidence here that context e�ects aid

communication, esp ecially in whisp er. The distinctive feature that is most

a�ected in whisp er is voicing, and our studies with large text corp ora seem

to indicate that p erhaps overall contribution of voicing distinct phonemes to

communication is not large. Finally, our results, taken in conjunction with

prior work, indicate that whisp ering works really well under noise-free listen-

ing conditions. With the exception of voicing, there is not much degradation

in the transmission of distinctive features. However, it is not completely clear

how well whisp er works under noise. A p ossible follow up study would b e
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Mo del Cross Entropy Information Transmitted in bits p er token

1-grams 2-grams 3-grams 1-grams 2-grams 3-grams

baseline 1.5095 1.3063 1.2374 - - -

/b/ vs /p/ 1.4925 1.2910 1.2241 0.0169 (1.1211%) 0.0153 (1.1708%) 0.0133 (1.0766%)

/d/ vs /t/ 1.4615 1.2657 1.2014 0.0480 (3.1786%) 0.0406 (3.1046%) 0.0361 (2.9142%)

/g/ vs /k/ 1.4962 1.2949 1.2274 0.0132 (0.8772%) 0.0114 (0.8725%) 0.0100 (0.8091%)

/f/ vs /v/ 1.4927 1.2941 1.2283 0.0167 (1.1079%) 0.0121 (0.9294%) 0.0092 (0.7408%)

/s/ vs /z/ 1.4783 1.2820 1.2169 0.0312 (2.0648%) 0.0243 (1.8605%) 0.0205 (1.6541%)

/dh/ vs /th/ 1.5002 1.2980 1.2314 0.0092 (0.6120%) 0.0083 (0.6355%) 0.0061 (0.4898%)

/sh/ vs /zh/ 1.5077 1.3046 1.2363 0.0018 (0.1163%) 0.0016 (0.1262%) 0.0011 (0.0928%)

/ch/ vs /jh/ 1.5048 1.3019 1.2338 0.0047 (0.3110%) 0.0044 (0.3353%) 0.0036 (0.2942%)

voicing/plosives 1.4313 1.2388 1.1776 0.0782 (5.1785%) 0.0674 (5.1622%) 0.0598 (4.8318%)

fricatives/a�ricates 1.4458 1.2554 1.1965 0.0636 (4.2146%) 0.0508 (3.8926%) 0.0410 (3.3100%)

[voiced] vs [voiceless] 1.3677 1.1843 1.1318 0.1418 (9.3923%) 0.1220 (9.3406%) 0.1057 (8.5382%)

Table 5.12: Estimate of Information carried by Voicing in Sp eech.
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Figure 5.9: Reducing Entropy of the Language with increased Context.

to study the confusions of whisp ered nonsense CV syllables under di�ering

noise conditions, rep eating the work of Miller and Nicely [76] but for whisp er

under di�erent band-pass conditions.
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CHAPTER 6

RECOGNITION OF WHISPERED SPEECH

This chapter describ es the exp eriments done on recognizing whisp ered sp eech.

We do cument the p erformance of standard training and adaptation tech-

niques, and prop ose new metho ds for building whisp ered sp eech acoustic

mo dels.

6.1 Accuracy of Sp eaker-Indep endent Acoustic

Mo dels

We �rst to ok a lo ok at the p erformance of sp eaker-indep endent sp eech recog-

nition systems on whisp ered sp eecebuilt . Acoustic mo dels were trained from

various subsets of the data using a training recip e similar to the one found in

[143]. The front-end used 13 Mel-Frequency Cepstral Co e�cients (MFCCs)

and their delta and delta-deltas as feature vectors and applied Cepstral Mean

Subtraction. The acoustic mo del consisted of tied context-dep endent tri-

phones with mixture Gaussians for the observation probability distributions.

Three-state monophone mo dels were �rst trained, then short pause mo dels

inserted. Monophones were split into triphones and clustered using a de-

cision tree. The numb er of Gaussians was then steadily increased and the

mo dels re-estimated. The language mo del was a bigram built from the exist-

ing sentences found in TIMIT, and backed-o� to unigram using Go o d-Turing

smo othing. Accuracy is computed as

A =
N � I � S � D

N
� 100%; (6.1)

where N is the numb er of words, and I , S and D were the numb er of inser-

tions, substitutions and deletions in the recognized sentence, after aligning

it with the reference (correct) sentence using a minimum edit distance algo-
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rithm. Our baseline result with the TIMIT corpus itself was 75:6% accuracy

using this pro cedure.

The data was divided into training, development and test subsets for each

subset with a sp eci�c typ e of sp eech data. In our nomenclature the su�xes

-us and -sg corresp ond to the parts of the corpus with a North American and

a Singap orean accent resp ectively, and -n and -w corresp ond to unwhisp ered

and whisp ered subsets of the data. The exact same steps were used in all

cases to build the acoustic mo del, but dep ending on which training data-set,

di�erent acoustic mo dels were built. The development sets were used to tune

parameters such as word insertion p enalty and grammar scale factor. Each

acoustic mo del was then cross-tested with test subsets of the resp ective typ e

of sp eech data, to obtain the results shown in Table 6.1.

The trained mo dels show relatively high accuracy in cases where there is

no mismatch b etween test and training data; however, the mo dels for whisp er

p erform signi�cantly worse than non-whisp ered sp eech mo dels. The results

when there is a mismatch in the training and test data seem to indicate that

accent causes at least as much accuracy loss (if not more) as sp eaking style

when it comes to sp eech recognition. Po or p erformance across sp eaking style

underscores the inherent brittleness in the standard approach to training

sp eech recognizers. These �gures sharply contradict those rep orted in [68],

which claimed that whisp ered mo dels can work for non-whisp ered sp eech and

vice versa. There can b e many reasons why our system do es not p erform as

robustly as those trained by Itoh et al, these could b e due to di�erent choice of

front-ends, p erhaps sp eci�cally in the cepstral normalization technique. Due

to the formula used for computing accuracy, negative values are p ossible

and in fact rep orted here. We found that the errors were largely due to

spurious insertions which drastically reduced accuracy. However the source

of these errors remain unidenti�ed. Very likely, techniques similar to those

used for making robust sp eech recognizers have to b e used to achieve similar

p erformance. We now turn to a consideration of such metho ds.

6.2 Implementing Eigenvoices in HTK

Eigenvoices [162] provide a way to p erform rapid adaptation by exploiting

the structure in inter-sp eaker variation. A simple approach is to consider
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(a) TIMIT and coarser wTIMIT subsets

Dataset

Acoustic Mo dels TM wTM wTM-n wTM-w wTM-us wTM-sg

TIMIT 75.57 -17.49 -15.34 -19.63 -11.23 -21.63

wTIMIT -9.19 81.76 87.09 76.46 84.93 79.66

wTIMIT-n -1.02 51.19 85.99 16.74 56.58 47.61

wTIMIT-w -6.34 50.30 25.42 76.18 53.40 48.25

wTIMIT-us -10.22 58.34 48.75 82.24 86.27 12.95

wTIMIT-sg -3.22 27.08 31.64 22.22 17.55 80.76

(b) TIMIT and �ner wTIMIT subsets

Dataset

Acoustic Mo dels us us-n us-w sg sg-n sg-w

TIMIT -11.23 -10.78 -11.69 -21.63 -18.36 -24.91

wTIMIT 84.93 88.69 81.16 79.66 86.03 73.35

wTIMIT-n 56.58 88.89 24.05 47.61 84.07 11.86

wTIMIT-w 53.40 27.79 81.36 48.25 23.85 72.76

wTIMIT-us 86.27 89.41 83.12 12.95 23.39 2.52

wTIMIT-us-n 54.33 88.84 4.67 0.04 17.07 -16.99

wTIMIT-us-w 53.80 27.88 82.04 -4.72 -16.37 6.92

wTIMIT-sg 17.55 19.25 15.86 80.76 86.96 74.56

wTIMIT-sg-n 5.08 15.08 -4.83 47.40 84.55 11.90

wTIMIT-sg-w 2.77 -11.40 16.81 48.40 22.38 74.97

Table 6.1: Accuracy Across Di�erent Mo dels and Data-sets.

only the mean parameters of an acoustic mo del. We assume that the means

for an acoustic mo del can b e treated as a linear combination of eigenvoices.

The mean parameters � m for each mixture can b e concatenated into a giant

sup ervector

� k =

0

B
B
@

� k;1
.

.

.

� k;M

1

C
C
A ; (6.2)

for an acoustic mo del of the k -th sp eaker with a total of M mixture Gaus-

sians. Finding the eigenvoices involves �nding spanning vectors for the sub-

space spanned by K sp eakers

S = spanf � k ; � 2; :::� K g (6.3)
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A dimensionality reduction technique is then used to �nd a compact sub-

space of the sp eaker subspace, thus concentrating only on the key di�erences

that vary from sp eaker to sp eaker. Principal comp onents analysis is one

metho d whereby we can obtain obtain a set of f e(1); :::e(E)g eigenvectors,

E < K , which characterize the subspace S. These eigenvectors are dubb ed

eigenvoices. In practice, the dimensionality of e(k) vectors is very large, so

directly computing the covariance matrix of the set of sp eaker vectors, as

required in PCA, is intractible. One way around this is to use Probabilistic

Principal Comp onents Analysis, which has an EM algorithm that is linear in

the size of the eigenvectors and estimates the principal subspace of S [163].

The PPCA-EM algorithm do es not actually pro duce orthogonal eigenvec-

tors � instead it pro duces vectors that span a given q dimensional subspace.

These vectors themselves capture inter-sp eaker variablity, and when used in

conjunction with the mean sup ervector, can b e used as a set of eigenvoices.

Implementing eigenvoices in HTK consisted of two steps � an implementation

of the PPCA-EM algorithm to pro duce a set of eigenvoices, and an imple-

mentation of the MLED algorithm in order to �nd optimal weights given the

eigenvoices, for a given sp eaker.

6.2.1 Maximum Likeliho o d Eigenvoice Decomp osition

The Maximum Likeliho o d Eigenvoice Decomp osition (MLED) is a metho d

prop osed in [162], which pro duces a ML estimate of eigenvoice weights from

given sp eech � the derivation of which is repro duced here. The algorithm

seeks to �nd the a mo del that maximizes the likeliho o d of the observed data

�̂ = arg max
�

L(Oj� ): (6.4)

This is equivalent to optimizing the auxilary function in the face of unknown

data �

Q(�̂ j� ) = E[logL(O; � j�̂ )jO; � ]: (6.5)
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In the case of adapting the means for a Gaussian Mixture HMM, this is

equivalent to optimizing

Qb(�̂; � ) = �
1
2

L(Oj� )
X

m;t


 m (t)[(ot � �̂ m )T C � 1
m (ot � �̂ m )]; (6.6)

for each mixture m , where � are mean parameters, Cm are covariance param-

eters, ot are observations at time t , and 
 m (t) is the o ccupation likeliho o d of

mixture m at time t .

The mo del means are a linear combination of eigenvoices, given by

�̂ m =
EX

k=1

wkem (k): (6.7)

Substituting this into the auxilary function and di�erentiating yields the

system of equations

X

m;t


 m (t)eT
m (k)C � 1

m ot =
X

m;t


 m (t)
EX

j =1

wj eT
m (k)C � 1

m em (j )

=
X

m;t


 m (t)eT
m (k)C � 1

m Em w (6.8)

for k 2 1::E .

Rewriting the E equations in matrix form, we obtain

X

m;t


 m (t)E T
m C � 1

m ot =
X

m;t


 m (t)E T
m C � 1

m Emw; (6.9)

where matrix E is a E by v matrix of eigenvoices for a mixture, where v

is the dimension of the observation vector, and E is the numb er of eigen-

voices. MLED thus can b e implemented in HTK by directly accumulating

the E T
m C � 1

m Em and E T
m C � 1

m matrices, and w obtained using a linear solver.

Finally, our implementation of MLED involved the following changes to

HTK:

� Adding a new up date mo de (UPEIGV) to HTK.

� Mo difying HERest to accept the new up date mo de using the `-u' switch

with an `e' (for eigenvoice) �ag.
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� Co de to read in an eigenvoice matrix in binary format and a `-e' switch

to HERest.

� Mo di�cation to HFB.c to p erform the necessary accumulation

� Co de to compute w from the accumulated matrices in HERest.

Exp eriments with the implementation showed that MLED was e�ective

in estimating weights, and often pro duced a go o d sp eaker dep endent mo del

with one iteration of the algorithm.

6.3 Sp eaker Adaptation with Normal and Whisp ered

Sp eech

We compared the p erformance of di�erent adaptation techniques for whis-

p ered sp eech. Results for normal sp eech are �rst presented. Table 6.1(a)

show the p erformance improvement of various basic techniques for normal

sp eech, averaged over all sp eakers. These values are computed by subtract-

ing the baseline accuracy of the sp eaker indep endent mo del of 66.65% over

the test set from the accuracy for the resp ective sp eaker adapted mo d-

els. Here, MLLR(m) and MAP(m) up dates only the mean comp onents,

CMLLR and MAP(mv) up dates b oth means and variances. The sup ervec-

tors for eigenvoice adaptation are assembled from the mean comp onents of

sp eaker adapted mo dels, which themselves are either adapted with MAP(m)

or MLLR(m); these corresp ond to the EIGV(map) and EIGV(mllr) lab els.

For the MAP up date metho ds, we found that the b est results were ob-

tained on the �rst iteration � further iterations tended to degrade p erfor-

mance. Our results show that MLLR, CMLLR and Eigenvoice using MLLR-

adapted means can achieve very go o d adaptation results even without a lot

of adaptation data. MLLR and CMLLR can improve as more adaptation

data is available, but Eigenvoice metho d seems to quickly hit a p erformance

asymptote. The comparatively p o orer p erformance of MAP could b e due to

the few numb er of utterances used in adaptation, as well as p o or overlap of

up dated parameters and parameters seen in the test set. This could have an

e�ect of overtraining the MAP mo dels to give unsatisfactory results.

The adaptation metho ds can b e combined to go o d e�ect. One commonly

used metho d is to apply a coarser, more rapidly adapting technique such
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(a) Basic Sp eaker Adaptation Metho ds

# of Utts MLLR(m) CMLLR MAP(m) MAP(mv) EIGV(map) EIGV(mllr)

5 6.67 8.52 1.43 -0.24 3.39 7.37

10 7.05 8.09 2.03 1.09 4.17 7.57

50 8.20 9.92 2.40 0.72 4.30 7.46

100 8.33 8.82 3.17 1.13 4.60 7.62

(b) Combined Sp eaker Adaptation Metho ds

# of Utts MLLR(m)+MAP CMLLR+MAP EIGV+MAP

5 5.50 0.45 -3.37

10 5.44 1.72 -3.79

50 7.52 0.77 -8.53

100 7.12 1.08 -11.97

Table 6.2: Improvement over SI baseline for Di�erent Sp eaker Adaptation

Metho ds (Normal Acoustic Mo dels)

as MLLR, followed by a �ner technique such as MAP. Results for combined

approaches are further tabulated in 6.1(b). Applying MAP as a �nal step

seemed to generally degrade p erformance. The reason for this is not clear,

but could b e due to insu�cient data to prop erly apply MAP.

Next, we lo ok at the same metho ds as applied to whisp ered sp eech. Table

6.3 shows analogous results for whisp ered sp eech. The baseline accuracy

for the sp eaker indep endent mo del is 54.65%. The metho ds involving MAP

once again fail to work. Our results seem to indicate that there is a larger

margin for improvement in whisp ered sp eech. It seems unlikely to explain

this by suggesting that there is greater inter-sp eaker variability in whisp ered

sp eech. Another more likely explanation is that the p o orer p erformance

of the sp eaker indep endent whisp ered sp eech mo del allows a larger margin

for improvement. To further examine these claims we tabulate the relative

improvement of each metho d � that is improvement divided by the baseline

accuracy of the sp eaker indep endent mo del � to give a b etter comparison in

Table 6.4. These �gures clearly supp ort the idea that the sp eaker di�erences

in whisp er are greater than in normal sp eech.
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(a) Basic Sp eaker Adaptation Metho ds

MLLR(m) CMLLR MAP(m) MAP(mv) EIGV(map) EIGV(mllr)

5 7.60 7.94 2.46 -0.37 7.90 11.37

10 10.12 9.64 2.99 0.26 8.04 11.80

50 12.42 12.54 2.70 1.36 8.44 11.97

100 12.40 13.45 3.50 1.74 8.22 11.93

(b) Combined Sp eaker Adaptation Metho ds

MLLR(m)+MAP CMLLR+MAP EIGV+MAP

5 5.62 -0.03 -1.38

10 8.72 0.80 -3.78

50 10.05 0.67 -10.99

100 10.43 2.00 -13.82

Table 6.3: Improvement over SI baseline for Di�erent Sp eaker Adaptation

Metho ds (Whisp ered Acoustic Mo dels)

# of Utterances

Adaptation Normal Acoustic Mo del Whisp er Acoustic Mo del

Metho d 5 10 50 100 5 10 50 100

MLLR(m) 10.01 10.58 12.3 12.50 13.91 18.52 22.73 22.69

CMLLR 12.78 12.14 14.88 13.23 14.53 17.64 22.95 24.61

MAP(m) 2.15 3.05 3.6 4.76 4.50 5.47 4.94 6.40

MAP(mv) -0.35 1.64 1.08 1.70 -0.67 0.48 2.49 3.18

EIGV(map) 5.09 6.26 6.45 6.90 14.46 14.71 15.44 15.04

EIGV(MLLR) 11.06 11.36 11.19 11.43 20.81 21.59 21.90 21.83

Table 6.4: Comparison of Relative Improvement of Sp eaker Adaptation

Metho ds (in %)

6.4 Adapting Sp eaking Style and Accent using

CMLLR

The next set of exp eriments use constrained Maximum Likeliho o d Linear

Regression (CMLLR) to determine how well existing trained non-whisp ered

sp eech or whisp ered sp eech mo dels can b e adapted to a di�erent sp eaking

style. The b est combination of parameters found was to use CMLLR with

a large numb er of no des (256) in our regression tree. Improvement achieved

by adapting non-whisp ered sp eech mo del for North American English to

whisp ered sp eech is shown in the �rst line in Table 6.5, and further results

for di�erent p ermutations follow. The last column of the table corresp onds

to accuracy obtained from testing the target adaptation test data with a
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Adaptation Data Numb er of Utterances Target Mo del

Original Mo del (Target) 10 50 100

wtimit-us-n whisp er 37.5 51.7 55.7 76.3

accent 13.4 30.9 36.5 82.5

wtimit-us-w normal 64.2 73.8 75.4 87.7

accent 0.5 12.9 17.8 69.0

Table 6.5: Adapting Accent and Sp eaking Style with CMLLR

sp eaker indep endent mo del trained from training subset of the same typ e

of data. Use of more than 100 utterances did not noticeably improve the

result, and we can see that the p erformance never reaches the same level

as that achieved by acoustic mo dels in the same mo dality. The approach

works well for adapting whisp ered sp eech mo dels to non-whisp ered sp eech

but not for accent. Even for the purp ose of style adaptation there is ro om

for improvement, and other metho ds for adaptation should prove useful to

this problem.

6.5 Acoustic Mo del Adaptation with Limited

Whisp er Data

In real-world applications it is far more likely to encounter collections of

normally sp oken, unwhisp ered sp eech for a particular talker rather than

whisp ered sp eech. One application of interest is thus to �nd some metho d

of building a sp eaker-dep endent acoustic mo del of whisp er using only un-

whisp ered sp eech from that sp eaker in conjunction with whisp ered and un-

whisp ered sp eech from anyb o dy else. In this section we develop some new

algorithms to do exactly just that.

Our algorithms are based on the eigenvoice adaptation of the means. For

sp eaker i , the mean parameters for a given state s and mixture j is expressed

as a linear combination of eigenvoices,

�̂ s;j
i =

X

k

wi;k es;j
k ; (6.10)

where ek is a sup ervector made from concatenating es;j
k in a particular order

of the state and comp onents, and ek is the k -th eigenvoice for the given sub-

102



Draft of Novemb er 17, 2010 at 13 : 35

space, and wi;k 's are eigenvoice weights that characterize the sp eci�c sp eaker

i in the inter-sp eaker space. Our training pro cedure pairs up sp eaker de-

p endent mo dels of unwhisp ered and whisp ered sp eech for individual talkers,

and builds two eigenspaces � one corresp onding to unwhisp ered sp eech, the

other to whisp ered sp eech. This general approach is illustrated in Figure

6.1. For each sp eaker in the training database, the eigenvoice weights for the

non-whisp ered and whisp ered subspaces are related via

ŵ(w)
i = ( ŵ(w)

i; 1 ; :::ŵ(w)
i;k ; :::)T = f ((w(n)

i; 1 ; :::w(n)
i;k ; :::)T )

= f (w(n)
i ): (6.11)

Here, the sup erscripts n and w corresp ond to unwhisp ered and whisp ered

mo dels, and f is some function b etween the normal and whisp er spaces that

has to b e learned. Given a new sp eaker, unwhisp ered sp eech can b e used

to obtain suitable eigenvoice weights which are then mapp ed into whisp ered

sp eech, and from here used to generate an acoustic mo del for recognizing

whisp er. This pro cedure do es not require any whisp ered sp eech from the

new sp eaker at all.

Two metho ds were considered for �nding the mapping f . The �rst ap-

proach is to simply consider a least squares pro jection on the set of paired

vectors for sp eakers in the training database. Let us consider a pro jection P

that maps a vector of normal sp eaker weights w(n)
k to a vector of whisp ered

sp eaker weights w(w)
k , for the k -th sp eaker. A suitable error criterion is to

minimize the mean squared error over all sp eakers, that is

P = arg min
P

X

8k

kP w(n)
k � w(w)

k k2

= arg min
P

kW (n)T
PT � W (w) T

k2; (6.12)

where W (n)
are vectors of each sp eaker's eigenvoice weights for the unwhis-

p ered sp eech, arranged column by column, and W (w)
arranged from eigen-

voice weights for whisp ered sp eech. Eq. 6.12 is a standard least squares

problem and is solved with the pseudo-inverse of W (n) T
. For K eigenvoice
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Figure 6.1: Illustration of Eigenspace Mapping Approach.

This shows the case for two eigenvoices. Thick solid lines with

the bullet end represent the mean vector for Sp eaker-Indep endent acous-

tic mo dels. Ellipses represent eigenspaces for b oth typ es of sp eech:

the longer axis of the ellipse is aligned with the �rst eigenvoice, the

lateral axis with the second eigenvoice. Thick arrowed lines repre-

sent the Sp eaker-Dep endent p erturbation o� the SI-mean, which can

b e describ ed by eigenvoice weights ( w 's). As describ ed in the text

any plausible mapping function describ ed by Equation 6.11 will work.

weights, this gives

P =

0

B
B
B
B
@

p0;0 p1;0 ::: pK � 1;0

p1;0 p1;1 ::: pK � 1;1
.

.

.

.

.

.

.

.

.

pK � 1;0 pK � 1;1 ::: pK � 1;K � 1

1

C
C
C
C
A

= [( W (n)W (n)T
)� 1W (n)W (w)T

]T : (6.13)

Since the eigenvoice sup ervectors are themselves orthonormal, a linear

transform with them as column vectors is distance-preserving. Hence our
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Figure 6.2: Illustration of Pro jection-Based Eigenvoice Mapping Pro cedure.

This shows the case for two eigenvoices. Thick solid lines with

a bullet end represent the mean vector for Sp eaker-Indep endent acous-

tic mo dels. Ellipses represent eigenvoice spaces for b oth typ es of

sp eech: the longer axis of the ellipse is aligned with the �rst eigen-

voice, and the lateral axis with the second eigenvoice. Thick arrowed

line on the left represents the sp eaker dep endent p erturbation o� the

SI-mean (left arrow); the other arrowed line corresp onds to the result-

ing mapp ed SD-p erturbation. We can see that the estimates of eigen-

voice weights in whisp er space ŵk 's result from a linear pro jection of wk 's.

solution also minimizes kE (w)W (w) � E (w)P W (n)k2 � k � (w) � E (w)P W (n)k2 ,

where E (w)
is a matrix comp osed of the whisp ered eigenvoices, and � (w)

is the

sup ervector of Gaussian mean parameters of a particular sp eaker's whisp ered

acoustic mo del. In other words this approach approximately minimizes the

mean squared error b etween the resulting mean parameters of the pro jected

sup ervector computed from parameters of the original normal acoustic mo del

and the original whisp ered acoustic mo del. This approach is illustrated in

Figure 6.2.

A second metho d mo dels the non-whisp ered and whisp ered eigenvoice

weights w(n)
i and w(w)

i of each sp eaker i jointly using a Gaussian Mixture

PDF, each mixture having a mean and covariance
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� k =

 
� (n)

k

� (w)
k

! T

; (6.14)

� k =

 
� (n)

k � (nw )
k

� (wn )
k � (w)

k

!

; (6.15)

and applying Gaussian Mixture Regression [174] to obtain an estimate of

ŵ(w)

ŵ(w)
i =

X

k

p(kjw(n))Ck(w(n) � � (n)
k ); (6.16)

where Ck is the rotation matrix for the k 'th mixture given by

Ck = � (wn )
k � n

k
� 1: (6.17)

In practice, these metho ds may provide a p o or estimate of the whisp ered

sp eech sup ervector due to insu�cient data. One way to ameliorate this is to

use the sp eaker-indep endent whisp ered sp eech mo del � (w)
SI as a background

and p erform a MAP up date on each state j and mixture comp onent m with

~� jm =
N jm

N jm + �
�̂ (w) +

�
N jm + �

� (w)
SI ; (6.18)

where N jm are state o ccupation likeliho o ds.

6.5.1 Joint Eigenvoice Adaptation of Whisp er and Normal

sp eech

In this approach we train common eigenvoices as an alternative to using

a mapping function. We can obtain sup ervectors for the sp eaker-dep endent

normal sp eech mo del and the whisp ered sp eech mo del, and concatenate them

into a giant sup ervector

~� i =

 
� (n)

i

� (w)
i

!

; (6.19)

where � (n)
and � (w)

are sup ervectors of sp eaker i , describ ed in the previous

section, for normal and whisp ered sp eech resp ectively. PPCA is then used
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to �nd a set of �joint� eigenvoices ~e's from

SV Df
�

~� 1 ~� i ::: ~� K

�
g = ~E
 V (6.20)

=
�

~e0 ~e1 ::: ~eM

�

 V: (6.21)

=

 
e(n)

0 e(n)
1 ::: e(n)

M

e(w)
0 e(w)

1 ::: e(w)
M

!


 V: (6.22)

Given normal sp eech from a new sp eaker, we simply use MLED to estimate

weights using only top half of the eigenvoices, and apply the same weights in

conjunction with the whisp er half of the eigenvoices to generate a whisp ered

sp eech mo del.

6.5.2 Word Recognition Accuracy achieved using Transformed

Mo dels

For this set of exp eriments, a triphone mo del with single Gaussians at each

state was used, so that memory requirements for eigenvoice computation

were tractable. Only the subset of sp eakers with a North American Ac-

cent ( wtimit-us ) was used. Our previouse exp eriment found that eigenvoice

adaptation worked b etter using MLLR-based sp eaker adapted mo dels as op-

p osed to MAP adapted ones when building the subspaces, so MLLR-based

eigenvoices were used for exp eriments here. One sp eaker is taken out for test-

ing, and the remaining used in the training pro cedures outlined in section 6.5.

The results are cross-validated across all 28 sp eakers, and averaged accuracy

is shown in Table 6.6. The metho ds lab eled MAP are identical to the two meth-

o ds, except that instead of using the synthesized whisp er-acoustic eigenvoice-

based mean parameters directly, an additional MAP adaptation step was

used to adapt from the sp eaker-indep endent whisp er mo del towards them.

The lab el �Shared Wts� refers to the joint eigenspace approach outlined in

section 6.5.1. The baseline accuracy for using the sp eaker-indep endent whis-

p ered acoustic mo del was 57:54%. The NIST sctk to olkit was used to com-

pare the recognition results from the sp eaker indep endent acoustic mo del

and those from the various systems, and all di�erences were found to b e

statistically signi�cant.

Our results seem to indicate that the e�ectiveness of the additional MAP
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Numb er of Utterances

5 10 50 100 200

Baseline (Sp eaker Indep endent Whisp er Mo del) 57.54%

Lin Pro j. 55.28 56.41 56.56 56.45 56.28

GMM 62.42 62.06 62.12 62.50 62.58

Pro j+MAP 58.14 58.36 58.18 58.40 57.97

GMM+MAP 57.99 58.15 58.18 58.44 58.03

Shared Wts 66.39 66.50 66.32 66.48 66.57

Table 6.6: Accuracy of Sp eaker-Dep endent Whisp er Acoustic Mo del

pro duced from Normal Sp eech of Said Talker.

adaptation step dep ends on the original e�ectiveness of the algorithm. For

instance, the linear pro jection algorithm pro duces whisp er mo dels that fare

worse than the sp eaker indep endent mo del. Adding the MAP step gives p os-

itive improvements to this technique. The GMM approach pro duces mo dels

that work b etter, and applying MAP reduces its e�ectiveness. The most

e�ective metho d thus far is to treat the whisp er and normal subspaces to-

gether and allow PPCA to derive a set of joint eigenvoices. It is not clear why

this metho d works b etter, and more study into variations of these algorithm

seems necessary.

6.6 Summary

This chapter has do cumented numerous exp eriments with basic sp eech recog-

nition and various adaptation metho ds on normal and whisp ered sp eech.

Sp eaker indep endent acoustic mo dels trained on whisp ered sp eech data p er-

form favorably compared with those trained on unwhisp ered sp eech data.

The exp eriments using di�erent adaptation techniques illustrate the com-

parative p erformance of various sp eaker adaptation techniques on whisp ered

sp eech data. Sp eaker adaptation has a greater impact in whisp ered sp eech

than unwhisp ered sp eech, though the reason for this is not clear.

Adapting unwhisp ered acoustic mo dels to work for whisp er generally works

well, but the resulting mo del do es not p erform b etter than a sp eaker-indep endent

whisp er acoustic mo del. We also develop three algorithms to sp eaker adapt

a whisp ered acoustic mo del using unwhispered sp eech data. Of these ap-

proaches, characterizing whisp ered and unwhisp ered acoustic mo del parame-
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ters in a joint subspace works the b est. A promising avenue for further work

seems to b e along the line of such algorithms.
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CHAPTER 7

CONCLUSION

7.1 Summary of Completed Work

So far we have presented two set of exp eriments, p erceptual and simulation-

based, to shed some light on whisp ered sp eech and how it is recognized.

Our p erceptual results are consistent with prior work, that whisp er carries

much information, and despite what it seems phonemic voicing is not all lost

in whisp er. More imp ortantly, we can quantify how well whisp ering actu-

ally works at word-level contexts. A simple exp eriment with context-length

shows that p erhaps there is actually not much information carried by phone-

mic voicing, and that contextual information greatly aids communication is

emphasized even more in whisp er.

Our exp eriments with sp eech recognition algorithms seem to suggest that

the standard approach is not fo olpro of. Despite claims from Itoh et al, a

normal sp eech acoustic mo del do es not do well at recognizing whisp er, adap-

tation metho ds need to b e used. We consider the problem of p erforming

recognition with limited amounts of training whisp er sp eech, and prop ose a

novel algorithm to do so based on eigenvoices.

However there are many problems left unsolved. Even as we know whisp er

conveys information relatively well, precisely what acoustic correlates help

it to do so remains unknown. Furthermore, the many problems asso ciated

with sp eech technology, in sp eaker identi�cation, recognition, understanding

have their analogous counterparts in whisp er, and these problems have to b e

further worked on separately. We now expand on some of these problems

and highlight some p ossible avenues for future work.
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7.2 Future Work

7.2.1 Expansion of the wTIMIT Corpus

One drawback of the wTIMIT corpus is the relatively small numb er of sp eak-

ers. TIMIT for instance has over 630 sp eakers. A third stage of collection

involving fewer sentences p er sp eaker might b e b ene�cial to the corpus. With

this addition, exp eriments involving sp eaker identi�cation and gender classi-

�cation b ecome meaningful to do.

7.2.2 Hyp er-Articulation in Whisp er

The literature [62] seems to suggest that there is some hyp erarticulation go-

ing on in whisp er. Although some studies have b een made, to date there has

b een no study of the movement of the tongue. In whisp er, it app ears that

articulators move to preserve salient acoustic targets [52], one question to

investigate would b e the nature of hyp er-articulation if any, and what acous-

tic cues they enhance. Learning ab out this could let us understand b etter

what acoustic cues are imp ortant for p erception of di�erent phonemes. One

promising approach would b e to collect articulation data from sp eakers dur-

ing whisp ering, and compare it to when phonated sp eech is used. One metho d

of doing so would b e to use an Electro-magnetic Midsagital Articulometer

[175] (EMMA) or similar system to track the movement of the tongue.

7.2.3 Discovering a Common Phonological Pro cess of Whisp er

and Phonated Sp eech

Alan Poritz [176] p erformed an exp eriment in which he found erco dic hidden

markov mo dels using LPCs as the feature vectors managed to discover vowel

and consonant structure in running sp eech. The question of whether or not

such a metho d would work for whisp ered sp eech is intriguing � in whisp er,

voicing cannot allow an easy segregation of phoneme classes. The question

as to whether or not . Some of our initial exp eriments along this vein have

b een inconclusive, but yet there is more to b e done.

We consider a continuous variable duration Hidden Markov Mo del [177].
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Figure 7.1: Continuous Variable Duration Hidden Markov Mo dels

This mo del is shown in Figure 7.1(a) In this ergo dic mo del, the duration

of a sp eech segment is explicitly mo deled using the Gamma distribution,

and observations are mo deled with a Gaussian probability distribution. Our

initial exp eriments to discover sp eech segments with MFCC vectors from

sp eech have b een inconclusive, and more work needs to b e done.

More interestingly, we may want to consider so called �multistream� ver-

sion, shown in Figure 7.1(b). The motivation for this is to assume a single un-

derlying phonological pro cess that can generate b oth normal and whisp ered

sp eech. Such a mo del would pro duce an asynchronous stream of observations,

each stream its own duration and observation mo del, that is conditionally

indep endent on the other given the state. In working out the mathemat-

ics of EM, it app ears that the same up date equations can b e used, except

for the state transitions which are just averages of the individual p er-stream

computed up dates. What such an ergo dic system would discover is left as a

future exp eriment.
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7.2.4 Mo deling the whisp ered glottal source as noise

It is commonly mentioned that in whisp er the glottal excitation is some-

what noise-like. It is imp ortant to con�rm if this is actually true. One

approach would b e examine the LPC sp ectra of whisp ered sp eech for di�er-

ent phonemes, and lo ok for the p oles near the low frequency regions, which

do not corresp ond to any formants. In this way we can test if whisp er is

indeed excited by sp ectrally shap ed noise.

7.2.5 Veri�cation of the Stevens-Wickesb erg result

Wickesb erg and Stevens played whisp ered consonants /t/ and /d/ to chin-

chillas and recorded the auditory resp onse [71]. They found that the resp onse

to /da/ had a double onset as opp osed to a single onset in /t/. It is curious

if an auditory frontend would pro duce the same result, and this is worth

investigating in detail.

7.2.6 Further algorithms for adaptation

In this work we have outlined some new algorithms for adapting normal

sp eech acoustic mo dels to whisp er. However, our metho d still requires some

whisp ered sp eech for initial training. The question as to how little whisp er

sp eech we can work with is up for investigation, and new algorithms remain

to b e discovered.

7.2.7 Isolating the critical p oints in whisp ered sp eech

Furui [178] p erformed p erceptual exp eriments involving front and back-truncated

consonant vowels, in order to isolate where p erceptuall imp ortant acoustic

information in the Japanese syllable is found. He discovered a p erceptual crit-

ical p oint where the identi�cation of the truncated syllable changes rapidly

as a p osition of function, and is related to the p osition of maximum sp ectral

transition. He concluded that the p osition of maximum sp ectral transition

contained the most imp ortant information for b oth consonant and vowel

identi�cation. The question as to this is so for whisp ered sp eech is unclear,

and is worth investigating. Rather than conduct a p erceptual exp eriment,
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an alternative is to use machine recognition, esp ecially a universal classi�er

such as Supp ort Vector Machines [179] to work on features extracted from

truncated cv sequences. The identi�cation rates can b e plotted along the

time line and the critical p oint identi�ed. In this way we can rea�rm or

deny Furui's result. Getting this piece of information would b e critical to

understanding what acoustic cues are invariant for phoneme p erception.

7.3 Conclusion

In the end, this work is but a scratch on the surface of a very deep and

involved problem. We leave the reader with numerous p ossible future direc-

tions to take with this research, in hop e that exciting discoveries will await

us.
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App endices
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APPENDIX A

FORMANT MEASUREMENTS

This app endix has formant measurements of the vowels /a,i,u/ in �uent

sp eech. The vowels are taken from the following contexts:

� /a/ is taken from �p ower� ([p a w Ä])

� /i/ is taken from �rarely� ([r e r l i])

� /u/ is taken from �hindu� ([h i n d u])

The utterances used were:

� A huge p ower outage rarely o ccurs.

� Do es Hindu ideology honor cows?
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Normal Sp eech Whisp ered Sp eech

/a/ /i/ /u/ /a/ /i/ /u/

Sp eaker F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3

s101 850 1510 2530 425 2227 3004 492 1462 2573 1133 1162 2731 765 2381 3015 552 1563 2692

s102 506 1216 2350 409 2685 3184 404 1585 3318 1056 1743 3002 769 2263 3069 470 1713 2889

s103 771 1203 2321 335 1936 2566 372 1208 2300 920 1249 2224 561 1923 2768 736 1290 2341

s105 928 1620 2669 418 2457 2985 492 1529 2691 1025 1710 2947 478 2525 2836 700 1400 2857

s106 817 1607 2444 319 2218 2517 269 884 2465 928 1789 2622 543 2343 2597 404 1054 2913

s107 771 1134 2255 400 1871 2520 386 1308 2286 974 1603 2212 454 2060 2708 441 1308 2488

s108 945 1584 2465 401 2230 2881 441 1677 2913 1141 1769 2676 938 2320 2926 884 1788 3152

s109 934 1703 2719 438 2291 3198 404 1474 2876 1041 1694 2890 644 2544 3134 607 1493 2531

s111 627 1146 2157 326 2159 2454 331 1218 2534 1099 1304 2358 566 1910 2303 672 1128 2327

s112 788 1394 2594 406 2498 3282 546 1313 2992 1051 1592 2848 600 2436 3041 878 1349 2927

s116 904 1569 2363 394 2292 2535 456 1239 2616 1141 1810 2712 518 2443 2855 671 1241 2750

s117 799 1238 2274 371 2052 2620 401 1430 2610 1047 1639 2781 462 2190 2721 601 1621 2643

s118 782 1246 2236 290 2152 2828 370 1150 2712 951 1533 2615 552 2801 3617 698 1290 2691

s119 893 1414 2451 485 2056 2666 390 1163 2245 1032 1640 2691 960 2186 2900 644 1144 2373

s120 1037 1479 2750 414 2318 2773 400 1252 2528 1133 1967 2685 408 2413 2706 733 1427 2625

s121 715 1255 1777 392 1886 2633 362 1077 2587 1147 1940 2636 393 2064 2707 533 1234 2488

s122 1181 2251 3556 553 1511 2359 411 1204 2470 976 2304 3337 408 2051 2714 497 1161 2562

s123 989 1433 2407 405 2270 2818 376 1171 2820 1070 1770 2313 1050 2857 3508 515 1382 2673

s124 700 1271 2322 359 2012 2536 362 1400 2328 958 1714 2691 760 2190 2794 736 1474 2562

s125 792 1315 3130 443 2255 3164 506 1529 3374 1117 1568 2913 1066 2379 3233 948 1647 3080

s128 738 1331 2354 406 1805 2617 440 1147 2564 847 1493 2544 510 1905 2709 570 1216 2433

s129 884 1439 2683 405 2350 3135 424 1120 2777 958 1269 2587 511 2554 3287 662 1216 2839

s130 902 1321 2142 427 2180 2594 476 1270 2681 1227 1961 2746 842 2186 2827 884 1290 2629

s131 738 1228 2420 402 1864 3221 446 1290 2286 939 1529 2525 607 1759 2508 552 1198 2636

Table A.1: Formant Frequencies for /i,a,u/ in Fluent Sp eech. (wTIMIT-US)

117



Draft
of

No
v

em
b

er
17,

2010
at

13
:

35

Normal Sp eech Whisp ered Sp eech

/a/ /i/ /u/ /a/ /i/ /u/

Sp eaker F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3

s000 815 1280 2817 278 2599 3189 317 1243 2672 1084 1633 2593 462 2539 3113 623 1176 2929

s001 956 1204 3138 364 2659 3147 378 925 2863 1120 1599 3212 1326 2655 2960 750 1142 2876

s002 737 1135 2281 324 2361 2553 257 920 2618 975 1294 2133 1527 2718 3715 441 1080 2766

s003 752 1107 2751 243 2328 3289 337 857 3157 803 1202 2741 399 2515 2544 399 974 2798

s004 581 1064 2590 262 2240 3019 311 867 2572 828 1016 2641 367 2199 2968 549 1198 2415

s005 667 1039 2776 290 2167 3282 485 1174 2831 1166 1341 2463 633 2309 2928 514 1234 2868

s006 799 1352 2995 284 2768 3859 423 1081 3160 1151 1756 2940 316 2698 3663 653 1032 2359

s007 740 955 2675 291 1972 3137 394 1077 2506 1182 2360 3575 404 2202 3171 998 2361 3245

s008 868 1301 2904 385 2577 3371 371 1271 3108 1111 1354 2842 573 2529 3209 786 1284 3021

s009 764 1278 1831 363 2792 3388 524 992 3373 1119 1546 2711 788 1981 2893 - - -

s010 620 1014 2296 280 2073 2911 339 877 2506 1015 2118 3416 386 2064 3023 - - -

s011 717 1097 2435 301 2138 2797 379 1131 2946 928 1107 2527 564 2114 3145 958 2488 3466

s012 586 1067 2839 297 2341 2949 342 1563 2563 1212 2382 3226 321 2108 3019 490 1327 2581

s013 519 956 3097 473 2741 3310 381 1364 2903 1081 1602 3145 902 2802 3374 679 1474 3023

s014 550 1056 2677 262 2097 3054 328 980 2721 832 1077 2845 356 2089 2907 405 1364 2359

s015 579 1025 2464 307 2428 3107 330 953 2660 990 1449 2796 330 2160 2950 773 1290 2765

s016 660 1148 2672 302 2307 3329 354 1189 2835 956 1255 2602 444 2488 3563 552 1179 3060

s017 786 1180 2460 402 2194 2955 393 1074 2646 1005 1412 2651 691 2194 2505 821 1178 3072

s018 700 1105 2581 343 2662 3643 478 1185 3159 1327 2654 3706 774 2673 3576 607 1234 2618

s019 750 1320 2823 339 2762 3598 371 1172 3317 1025 1578 2640 591 2584 3374 847 1234 3042

Table A.2: Formant Frequencies for /i,a,u/ in Fluent Sp eech. (wTIMIT-SG)
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