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Abstract

In this paper, we propose a joint optimal method for automatic
speech recognition (ASR) and ideal binary mask (IBM) estima-
tion in transformed into the cepstral domain through a newly
derived generalized expectation maximization algorithm. First,
cepstral domain missing feature marginalization is established
using a linear transformation, after tying the mean and vari-
ance of non-existing cepstral coefficients. Second, IBM estima-
tion is formulated using a generalized expectation maximiza-
tion algorithm directly to optimize the ASR performance. Ex-
perimental results show that even in highly non-stationary mis-
match condition (dance music as background noise), the pro-
posed method achieves much higher absolute ASR accuracy
improvement ranging from 14.69% at 0 dB SNR to 40.10% at
15 dB SNR compared with the conventional noise suppression
method.
Index Terms: robust speech recognition, ideal binary mask
classification, missing feature

1. Introduction
Speech intelligibility is easily degraded by unexpected mis-
match. Therefore, speech processing to mitigate or even elimi-
nate the adverse effect of the mismatch has been a very impor-
tant research topic not only for human-to-human interaction,
but also for robust automatic speech recognition (ASR). Note
that the source of the mismatch is necessarily neither station-
ary nor expected. Humans are good at decoding speech even
in adverse acoustic environments, e.g., a cocktail party [1, 13].
However, the dependence of ASR on the degree of mismatch is
much more critical, and is a very important unsolved problem.
Recently, missing feature theory has been applied to mitigate
the negative influence of the mismatch. Missing feature the-
ory classifies the reliable and unreliable feature components
first, and uses the reliability information to enhance ASR accu-
racy [3, 11, 10, 13, 12]. The optimal estimation is rephrased
as “imputation” and model adaptation is supplemented with
marginalization over missing feature components. Missing fea-
ture approach based on complicated spectral domain modeling
is reported to be inferior to the cepstral domain modeling with
optimal imputation [10]. However, even the optimally enhanced
feature is not the same with the original clean feature, and this
mismatch is transfered to all the cepstral components, such that
it deteriorates the recognition accuracy. Therefore, one of the
important current issues is how we can import the missing fea-
ture approach into the cepstral domain feature without having
to impute a full feature vector from the pre-processing.
Many papers, since the early 1990s, have asked how we can
optimally classify the missingness directly for speech recogni-

tion performance. Recently, suppressing the missing part via
ideal binary mask (IBM) has been demonstrated to be effective
for increasing intelligibility of human-to-human speech com-
munication [7]. Typical method for automatic IBM estimation
use relatively less complicated front-end processing [3, 11, 7]
and the recognition is performed based on the results of the
separated pre-processing, which is not necessarily optimal for
speech recognition based on a hidden Markov model (HMM).
In this paper, we first introduce how we can use the HMMs
trained on the cepstral domain features with a missing feature
approach. Our method gives the merits of both: optimal im-
putation for cepstral domain HMM [10] and missing feature
marginalization in spectral domain HMM [3]. Secondly, we
introduce decoder-oriented IBM estimation such that we can
maximally utilize the information encoded in the parameters
of a complete ASR framework. Since the missingness is de-
clared by the speech models, any mismatch different enough
from the speech will be classified as unreliable, for example,
non-stationary abrupt impulsive noise can be detected and re-
moved. Therefore, limitless cases of mismatch conditions can
be handled simply if they are different from the speech used for
training the HMMs.

2. Proposed method
2.1. Linear transformation with Gaussian mixture model
(GMM)

Speech is contaminated differently in each frequency band.
Missing features (features corrupted by mismatch) can be
marginalized out, if the HMM has been trained using spectral
features [13]. However, an HMM trained on cepstral domain
features produces lower word error rate [10]. In this section,
this gap is bridged by using the simple fact that the discrete co-
sine transform (DCT) is a linear transformation of the spectrum,
and high order cepstral coefficients are not useful for discrimi-
nating among different models. To get the cepstral features, we
apply a DCT operation to the spectral coefficients. For example,
mel-frequency cepstral coefficients (MFCCs) y can be obtained
by the following equation.

y = Dx, (1)

where x is mel-frequency spectral coefficients (MFSCs) and D
is a DCT matrix such that
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where i, j = 1, 2, · · · , F and F is the number of feature com-
ponents in a frame. The first row is divided by

√
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DCT matrix orthonormal. If we train an HMM with a Gaussian
mixture model (GMM)
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where C is the target utterance model, q means a specific state
and usually we use a diagonal covariance matrix, diag(σ2

i|q,C).
Then,
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i.e., the spectral feature distribution is given by a trained HMM
with full covariance GMM. Note that it is possible to fill the
missing mean and variance for high order coefficients by us-
ing global mean vector μ

g
and variance vector σ2

g , independent
of the utterance models, states, and mixture components. For
example, our experiments use 13 MFCCs transformed from 26
MFSCs. This dimensionality reduction is justified because the
remaining coefficients do not play an important role to differen-
tiate the trained models. The replacement with a global mean
and variance may be interpreted as a mean and variance tying
process across all the different models [2]. Only the mean and
variance for the first half of the coefficient vector, multiplied
by the number of mixture components, need to be trained using
model dependent utterances. Compared with the case when we
have to train the full-covariance GMM using spectral features,
this is really a huge parameter reduction; at the same time, we
are now able to use the missing feature marginalization scheme,
since we have an equivalent spectral domain HMMs. Further-
more, we may increase the spectral domain feature dimension,
e.g. from 26 to 64 as in [3] if necessary, with relatively small
increase of the corresponding cepstral domain. Marginalization
of a GMM is performed by simply deleting unreliable compo-
nents from the mean vector, and deleting the row and column of
the unreliable components for the covariance matrix. Therefore,
the missing parts will be recognized as “missing” and will not
contribute any false information to the acoustic score produced
by each model.

2.2. Decoding with missingness classification based on the
decoder

In this section, we formulate a joint optimal estimation problem
of missingness label (IBM) per each feature component in every
frame and ASR, using a generalized EM procedure [8]. Figure
1 shows a conceptual block diagram for the proposed method.
Features are labeled as “missing” if doing so increases ASR
performance; at the same time, ASR is performed aiming to
increase the accuracy of missingness label. For the initialization
procedure we may use conventional IBM estimation methods,
but we try to rely only on the speech model we already have
except for the part of estimating stationary noise level, if any.

Decoder oriented optimal 
missing feature classification

ASR with dynamic decoder

Enhanced speech

Decoded word lattice

Generalized Expectation-
Maximization (GEM) 
algorithm

Figure 1: Block diagram for proposed GEM procedure

2.2.1. Maximum Likelihood Estimation (MLE) of missing fea-
ture labels

IBM estimation produces an estimated binary mask vector se-
quence (EBMVS),

x̂L(1 : T ) = arg max
xL(1:T )

log p (x(1 : T )|xL(1 : T )) , (5)

where xL(t, f) ∈ {0, 1} according to 1 is for reliable feature, 0
is for unreliable feature, the frame index t = 1, 2, · · · , T where
T is total number of frames, the feature index f = 1, 2, · · · , F
where F is total number of feature. Estimation of x̂L(1 : T ) can
be reformulated into a GEM problem, considering the EBMVS
as a parameter to estimate, and the model for ASR as a latent
variable.

x̂L(1 : T ) = arg max
xL(1:T )

Q(xL(1 : T ), xL(1 : T )0), (6)

where

Q(xL(1 : T ), xL(1 : T )0) (7)

= Ep(C|x(1:T ),xL(1:T )0) [log p(x(1 : T ), C|xL(1 : T ))] .

In the maximization step, we need to solve the following equa-
tion to estimate x̂L(t, f).

x̂L(t, f)

= arg max
xL(t,f)∈{0,1}
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i=1

p(Ci|x(1 : T ), xL(1 : T )0)

·
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· βt(q|Ci, x(t + 1 : T ), xL(t + 1 : T )0) (8)

· log p(x(t)|xL(t, f), xL(t,¬f) = xL(t,¬f)0, Ci, q),

where Ci represents an utterance model and NC is the total
number of utterance models, xL(t,¬f) represents xL(t) ex-
cluding xL(t, f), xL(1 : T )0 is the estimate of EBMVS at pre-
vious iteration, and αt(q) and βt(q) are the conventional for-
ward and backward variables at time t and state q [9].
Instead of following (8), in this paper we replace the marginal-
ization for state sequence by forward-backward algorithm with
the best sequence by Viterbi decoding as shown in (9). Then, the
expectation step will be less computationally expensive and the
maximization step can also be implemented with less for-loops,
because we are given the states at each frame, so all frames can



be independently updated.

x̂L(t, f)

= arg max
xL(t,f)∈{0,1}

NC∑
i=1

p(Ci|x(1 : T ), xL(1 : T )0) (9)

· log p(x(t)|xL(t, f), xL(t,¬f) = xL(t,¬f)0, Ci, q
Ci
t ),

where qCi
t represents a best path state at time t in a given

model Ci. For fair comparison, some normalization proce-
dure is needed to prevent the situation where we always choose
xL(t, f) = 0 in (9). To prevent this, we may want to claim that
we should know a mismatch source (noise) model responsible
for the missing components. However, because often times it is
not available, we introduce a method to resolve this issue with-
out necessity of those noise models in the following.

x̂L(t, f) = arg max
xL(t,f)∈{0,1}

f(xL(t, f)), (10)

where f(1) is the same as (9), but f(0) is formulated as follows:

f(0)

=

NC∑
i=1

p(Ci|x(1 : T ), xL(1 : T )0) (11)

· [log p(x(t,¬f)|xL(t,¬f) = xL(t,¬f)0, Ci, q
Ci
t )

+ log pn(x(t, f)|xL(t,¬f) = xL(t,¬f)0, Ci, q
Ci
t )],

where

pn(x(t, f)|xL(t,¬f) = xL(t,¬f)0, Ci, q
Ci
t ) (12)

= arg max
x(t,f)∈CIα

p(x(t, f)|xL(t,¬f) = xL(t,¬f)0, Ci, q
Ci
t ).

In statistics, a confidence interval (CI) is an interval estimate
of a random parameter [14]. Probability that the interval in-
cludes the parameter is determined by the confidence level α.
For example, if we simplify (12) to the case of 2 reliable feature
components x(t, f1) = a, x(t, f2) = b in a given model C and
state q, then pn(x(t, f)|x(t, f1) = a, x(t, f2) = b, C, q) can
be described as follows.

pn(x(t, f)|x(t, f1) = a, x(t, f2) = b, C, q) ∼ N(μ, Σ),
(13)

where

μ = E[x(t, f)] + Cov[x(t, f), [x(t, f1) x(t, f2)]] (14)

· Cov[[x(t, f1) x(t, f2)]]
−1([a b] − E[x(t, f1) x(t, f2)])

T ,

and

Σ = Cov[x(t, f)] − Cov[x(t, f), [x(t, f1) x(t, f2)]]

· Cov[[x(t, f1) x(t, f2)]]
−1

· Cov[[x(t, f1) x(t, f2)], x(t, f)]. (15)

2.2.2. Initialization

Before starting iterative IBM estimation, a reasonably good
starting point with GEM is important. The following schemes
are designed to achieve a good starting point.

<Stationary background noise filtering>
We can easily obtain the stationary background noise
statistics [4], therefore spectral components below the sta-
tionary noise floor can be initially labeled as “missing”’

MFCC MFSC MFSC-missing one

Accuracy(%) 94.24 94.24 94.64

Table 1: Recognition accuracy(%)

(xL(t, f)0 = 0).

<Confidence Interval>
The second part of the initialization scheme is formalized as
follows:

H0 : x ∈ ∪θ∈ΘCIαhigh,αlow |θ (16)

CIαhigh,αlow|θ = (xL, xH), (17)

such that P (x < xL) = αlow and P (x > xH) = αhigh,
where Θ includes all states in all models. Basic object of this
scheme is to detect the missing parts based on confidence
scores of speech models, which have been already trained in a
target environment, e.g. high SNR environment.

<Speech model based voice activity detection (VAD)>
At the end of the initialization process, we apply a model based
VAD, which is dependent on the relative number of reliable
components in each frame compared with the maximum num-
ber of reliable components among all frames in a given utter-
ance. We declare a frame with fewer reliable components than
the threshold as missing, thereby removing frames with very
few reliable feature components.

3. Experiment
To validate the proposed method, isolated digit HMM recogniz-
ers with a single Gaussian per state were built using 13 MFCCs
transformed from 26 MFSCs. HTK [2] was used to train the
12 different models “one”, “two”, · · · , “nine”, “zero”, “oh”
and “silence” using the TIDigits corpus [6]. After training the
models, we transformed the models back to the spectral domain
by following (4). When we train HMM models, we can ex-
clude the silence model using forced alignment. Given only the
digit models, the silence frames (presumably contaminated with
background noise) can be classified as missing.
Three different tests were performed to check the validity of
(4), first using cepstral features, second using spectral features
for the testing data, and third using part of the spectral features
to simulate the missing features case. Note that for the first set,
we just need to use the original HMM model, trained on 13
MFCCs. For the second and third sets, we need to use the lin-
early transformed HMM models. As discussed previously, the
global mean and variance have been used to fill the last 13 high
order MFCCs. For the third case, the 26th MFSC, which sum-
marizes the energy between 3.6 kHz and 4.0 kHz, is simulated
as missing. Table 1 shows the recognition accuracy in all three
cases. As expected, the transformed HMM produces exactly the
same accuracy as the original HMM. Interestingly, the accuracy
of clean-speech TIDigits recognition is improved slightly when
we marginalize out the last MFSC.
Figure 2 shows the ASR accuracy of the noisy speech with
white noise as background noise, after applying enhancement
by MMSE logSA [4], and after MMSE logSA together with the
proposed scheme. Note that MMSE logSA with the proposed
method outperforms MMSE logSA alone. Figure 3 (highly
non-stationary dance music as background noise) shows more
interesting results with the proposed scheme. A conventional
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Figure 2: Recognition accuracy(%) vs SNR (dB) with white
noise as background noise

speech enhancement algorithm deteriorates the ASR perfor-
mance. However, the proposed method highly outperforms the
baseline. Normally it is known to be very hard to achieve
robust speech recognition in music-like non-stationary back-
ground noise [11], but the proposed method is performing much
better than baseline in this kind of unexpected, untrainable mis-
match condition.

4. Conclusion and future work
This paper uses the knowledge of a trained ASR to classify the
reliable feature components for missing-feature speech recog-
nition, which in turn contributes to increase the accuracy of
ASR. Signal enhancement method like MMSE logSA can be
combined with the proposed scheme without hurting the per-
formance of the front-end processing. In fact, if we can have
more reliable feature component through this separate front-end
processing, it supplies us a better chance to have more accu-
rate speech recognition results. GEM iteration iteratively ap-
proaches the utterance specific speech process models allowing
better estimation of the binary mask. To summarize, the pro-
posed method can provide better ASR performance not only
for the case of stationary mismatch (by combining with pre-
processing), but also for the case of the non-stationary mis-
match, where the mismatch is not easily modeled or estimated.
In the experimental study on understanding the cocktail part ef-
fect, the binaural aspect of human hearing has been emphasized.
This location based multichannel information will be combined
to boost the IBM estimation accuracy with the proposed one-
channel scheme given the correct estimate of the direction of
arrival (DOA) of the target speech per each feature index [5].
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