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ABSTRACT

This paper describes the results of our first experiments in small
and medium vocabulary dysarthric speech recognition, using the
database being recorded by our group under the Universal Ac-
cess initiative. We develop and test speaker-dependent, word– and
phone-level speech recognizers utilizing the Hidden Markov Model
architecture; the models are trained exclusively on dysarthric speech
produced by individuals diagnosed with cerebral palsy. The experi-
ments indicate that (a) different system configurations (being word
vs. phone based, number of states per HMM, number of Gaussian
components per state-specific observation probability density etc.)
give useful performance (in terms of recognition accuracy) for dif-
ferent speakers and different task-vocabularies, and (b) for subjects
with very low intelligibility, speech recognition outperforms human
listeners on recognizing dysarthric speech.

Index Terms— speech recognition, dysarthria, cerebral palsy,
human-computer interface, assistive technology, augmentative com-
munication

1. INTRODUCTION

Automatic speech recognition (ASR) software with high word
recognition accuracy is now widely available to the general pub-
lic; accuracy of the newest generation of large vocabulary speech
recognizers, after adaptation to a user without speech pathology,
typically exceeds 95% (Dragon claims a 99% accuracy for Dragon
Naturally Speaking version 9 [1]). To cite one example of an
ASR success story, the winner of the 2007 National Book Award
for fiction, The Echo Maker, was dictated using ASR software [2].
Therefore, ASR has been reasonably successful at providing a useful
human-computer interface especially for people who find it difficult
to type with a keyboard (e.g., patients with carpal tunnel syndrome).

However, many individuals with gross motor impairment, in-
cluding some people with cerebral palsy and closed head injuries,
have not enjoyed the benefit of these advances in speech technology,
mainly because their general motor impairment includes a compo-
nent of dysarthria: reduced speech intelligibility caused by neu-
romotor impairment. Such people find their participation in soci-
ety limited by their inability to use a personal computer, and it is
these aforementioned motor impairments that often preclude normal
use of a keyboard. For this reason, case studies have shown that
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some dysarthric users may find it easier, instead of a keyboard, to
use a small-vocabulary ASR system, with code words representing
letters and formatting commands, and with acoustic speech recog-
nition carefully adapted to the speech of the individual user (e.g.,
see [3], [4]).

Faculty and graduate students at the University of Illinois from
such diverse departments as Electrical & Computer Engineering,
Speech & Hearing Science, and Disability Resources & Education
Services are currently engaged in acquiring and experimenting with
a database of dysarthric speech, with an aim to develop dysarthric
ASR systems and a corresponding human-computer interface pro-
totype (see [5]) for use by students with dysarthria at the Univer-
sity of Illinois. This being a work in progress, the work described
here investigated the performance (in terms of the recognition accu-
racy) on a part of this database, of word– and phone-based audio
speech recognition models employing the Hidden Markov Model
(HMM) architecture, for both small– and medium-size vocabularies,
designed to be used for unrestricted text entry on a personal com-
puter.

2. BACKGROUND & MOTIVATION

2.1. Prevalence of dysarthria

Speech and language disorders are caused by various types of con-
genital or traumatic disorders of the brain, nerves and muscles [6].
Dysarthria is a collective term used for referring to a group of motor
speech disorders resulting from disturbed muscular control of the
speech mechanism due to damage of the peripheral or central ner-
vous system. People suffering with one of the “dysarthrias” exhibit
oral communication problems on account of weakness, incoordina-
tion or paralysis of speech musculature. The physiologic characteris-
tics of dysarthria include abnormal/disturbed strength, speed, range,
steadiness, tone and accuracy of muscle movements. The communi-
cation characteristics include disturbed pitch, loudness, voice qual-
ity, resonance, respiratory support for speech, and articulation. For
details regarding etiology, assessment and treatment of dysarthria,
refer to [7].

2.2. Motivation

Although dysarthria can differ notably from normal speech due to
imprecise articulation, the articulation errors are generally neither
random (unlike, for example, in the case of apraxia) nor unpre-
dictable. In fact, previous studies show that most articulation errors



in dysarthria can be described in terms of a small number of substi-
tution error types [8], [9], [10]. Kent et al. [8], for example, suggest
that most articulation errors in dysarthric speech are primarily errors
in the production of one distinctive feature. When articulation errors
occur in a consistent manner and, as a result, they are predictable,
there exists the possibility of using ASR, even for speech that is
highly unintelligible for human listeners.

2.3. Present state of art: ASR for dysarthria

Several studies have repeatedly demonstrated that adults with
dysarthria are capable of using ASR, and that in some cases, human-
computer interaction using speech recognition is faster and less
tiring than interaction using a keyboard ( [3], [4]). The technology
used in these studies is commercial off–the–shelf speech recognition
technology. Further, these studies have focused on small-vocabulary
applications, with vocabulary sizes ranging from ten to seventy
words. To our knowledge, there is not currently any commercial or
open–source product available that would enable people in this user
community to enter unrestricted text into a personal computer via
automatic speech recognition.

3. EXPERIMENTS

3.1. Data used

The experiments described in this paper utilized speech of 7 sub-
jects from the Universal Access database [11]. This corpus was
constructed with the aim of developing large-vocabulary dysarthric
ASR systems which would allow users to enter unlimited text into
a computer. All subjects exhibited symptoms of spastic dysarthria,
according to an informal evaluation by a certified speech-language
pathologist. Each subject recorded 765 isolated words in 3 blocks of
255 words each; (a) common to all blocks: 10 digits (D), 19 com-
puter commands (C), 26 radio alphabet letters (L), and 100 common
words (CW) selected from the Brown corpus of written English; and
(b) unique to each block: 100 uncommon words (UW) selected from
children’s novels digitized by Project Gutenberg. Vocabularies D
and CW were primarily composed of monosyllables, C and L of bi-
syllables, and UW of polysyllabic words. The subjects’ speech was
affected by dysarthria associated with cerebral palsy. Kim et al. [11]
describe in detail, the acquisition of and intelligibility assessment
on this database. Two hundred distinct words were selected from the
recording of the second block: 10 digits, 25 radio alphabet letters, 19
computer commands and, 73 words randomly selected from each of
the CW and UW categories. Five naive listeners were recruited for
each speaker and were instructed to provide orthographic transcrip-
tions of each word that they thought the speaker said. The percentage
of correct responses was then averaged across five listeners to obtain
each speakers intelligibility. Table 1 lists the subjects whose speech
materials from the UA database were used, along with their human
listener intelligibility ratings. The first letter of the subject code (‘M’
or ‘F’) indicates their gender.

3.2. ASR tasks and task–vocabularies

Ten recognition tasks were set up using the recorded data, as sum-
marized in Table 2.

The measure used for assessing the performance of the devel-
oped recognizers is the fraction of task–vocabulary words correctly

Table 1. Summary of Speaker Information (in decreasing order of
human listener intelligibility rating).

Speaker Age Speech Intelligbility (%)

M09 18 high (86%)
M05 21 mid (58%)
M06 18 low (39%)
F02 30 low (29%)
M07 58 low (28%)
F03 51 very low (6%)
M04 >18 very low (2%)

Table 2. ASR Recognition Tasks and corresponding Vocabulary
Sizes

Task Vocabulary Vocabulary Size

T01 D 10
T02 C 19
T03 L 26
T04 D+L+C 55
T05 CW 100
T06 UW 100
T07 L+C+CW 145
T08 D+L+C+CW 155
T09 L+C+CW+UW 245
T10 D+L+C+CW+UW 255

recognized (in percent), defined in Equation 1.

%WC =
# words correctly recognized

vocabulary size(# words)
(1)

3.3. Architecture

HMM-based speech recognizers employing three configurations
were developed and tested: whole-word, monophone and triphone
(word-internal, context-dependent). Blocks 1 and 3 were used for
training and block 2 for testing, for each speaker–task combination.
Referring to Table 2, word-level recognizers were built for tasks
T01-T05, T07 and T08 (the training vocabulary was thus exactly
twice the size of test vocabulary). The other tasks had uncommon
words as part of their vocabularies, and since each block’s uncom-
mon words were unique to it, therefore could not be modeled at the
word level. For tasks T06-T10, phone-level (both monophone and
triphone) recognizers were built. Hence, tasks T07 and T08 are the
ones for which all three configurations were tested.

The features extracted from the speech waveform comprised
of 12 Perceptual Linear Prediction coefficients [12] for 25 ms
Hamming-windowed segments obtained every 10 ms, plus the
energy of the windowed segment. ‘Velocity’ and ‘Acceleration’
components were also calculated for this 13-dimensional feature,
which finally resulted in a 39-dimensional acoustic feature vector.

For each configuration-task combination, the number of Gaus-
sian components in the state-specific observation probability densi-
ties was increased (in an iterative manner) in powers of 2, starting
from 1 and stopping when either (a) the number of components had
risen to 32, or (b) the %WC score had decreased on two consecu-
tive iterations. The number of states per HMM was fixed at 3 for
monophone and triphone systems, but was varied from 3 through



11 for the whole-word systems. The scores reported are for a par-
ticular HMM configuration (in terms of number of states per HMM
and number of Gaussian probability density components) because
the stopping stage of the above-mentioned iterative process is likely
to be different for different task and subject combinations. Standard
methods for choosing HMM comfiguration (using development test
data) could not be employed on account of insufficient data. The
results reported in the next section should therefore be interpreted
as development test results. In order to avoid over-tuning, the HMM
configuration was constrained to be the same across all speakers (and
if possible across all tasks, especially for whole-word systems where
the number of states per HMM was also varied). For the whole-
word systems, results are for HMMs with 2 Gaussian components
per probability density and 6 states per HMM (except for task T01,
for which results are presented for 5-state HMMs). For the mono-
phone and triphone systems, results are for HMMs with 16 and 2
Gaussian components per probability density, respectively.

4. RESULTS

Tables 3-6 list the %WC scores for whole-word, monophone and
triphone systems respectively. The subjects are listed in decreasing
order of intelligibility rating.

Table 3. %WC scores for whole-word systems: tasks T01-T04.
ASR Task

Speaker T01 T02 T03 T04

M09 84.29 100 97.25 89.87
M05 90 78.95 77.47 63.12
M06 92.86 81.95 77.47 72.21
F02 94.29 83.46 69.78 72.99
M07 100 86.47 85.71 80.78
F03 74.29 63.91 41.76 40.26
M04 46 23.16 19.23 14.18

Table 4. %WC scores for whole-word systems: tasks T05,T07,T08.
ASR Task

Speaker T05 T07 T08

M09 63.29 69.26 65.9
M05 56.14 54.68 52.9
M06 52.86 53 51.24
F02 64.43 58.72 57.24
M07 56.14 58.92 58.89
F03 49.43 36.35 33.82
M04 6.4 7.03 6.84

whole-word ASR: For all subjects, recognition accuracy deterio-
rates with increase in vocabulary size. However, for speakers with
low and very low intelligibility (all except M09 and M05),recog-
nition accuracy is higher than their respective intelligibility ratings
(the magnitude of difference is larger for small vocabularies than for
medium sized ones). For M09 and M05, the recognition accuracy
is higher than their intelligibility ratings for small sized vocabular-
ies (tasks T01-T04) but not the medium sized ones (tasks T05, T07,
T08).

monophone ASR: For all subjects, ASR accuracy on task T06
(uncommon words only) was always worse than their respective in-
telligibility ratings. ASR was less accurate on T06 (100 polysyllabic

Table 5. %WC scores for monophone systems.
ASR Task

Speaker T06 T07 T08 T09 T10

M09 31.14 47.49 46.82 46.53 50.36
M05 29.43 48.57 50.05 32.89 39.1
M06 14.57 37.54 36.31 26.82 30.48
F02 17.43 42.76 42.76 26.82 31.2
M07 15.57 44.83 43.78 28.98 34.01
F03 2.14 25.22 22.4 6.94 8.8
M04 1.2 6.07 5.94 2.37 2.59

uncommon words) than on any task containing monosyllables (in-
cluding those with twice the vocabulary size). For all subjects, the
recognition scores for tasks T07 and T08 were respectively higher
than those on T09 and T10 (which are T07 and T08 with the uncom-
mon words added). Comparing T09 and T10 scores, it appears that
incorporating digits into the vocabulary improves the %WC score by
4-7% absolute, for all speakers except F03 and M04 (very low intelli-
gibility). For these two speakers, there is only a slight improvement.
Finally, for low and very low intelligibility speakers, the monophone
system recognizes their speech as well as the human listeners on all
tasks but T06 (all speakers) and possibly T09 (M06 and F02).

Table 6. %WC scores for triphone systems.
ASR Task

Speaker T06 T07 T08 T09 T10

M09 25.29 63.65 63.32 46.47 52.04
M05 13.57 54.48 53.55 30.44 35.52
M06 5.43 58.82 52.53 29.8 34.01
F02 3.43 54.48 56.68 27.81 35.06
M07 7.86 57.14 60.65 32.48 43.87
F03 1 40 38.89 9.97 12.61
M04 1.8 4.83 5.81 1.96 2.82

triphone ASR: For all subjects, the variation in scores is simi-
lar to the one in the monophone case: performance on T06 worse
than intelligibility rating; and scores for T07 and T08 respectively
higher than those on T09 and T10, indicating performance deterio-
ration on adding uncommon words. As with the monophone recog-
nizers, incorporating digits into the vocabulary improves the %WC
score (comparing T09 and T10 scores) by 5-12% absolute, for all
subjects except F03 and M04 (for these two, there is again, only a
slight improvement). On task T10, the triphone architecture gives a
higher score than the intelligibility rating for all subjects with low
and very low intelligibility, except M06. In fact, for these subjects,
triphone ASR has also been able to achieve a performance at par
with or better than the human listener rating on task T09.

monophone vs. triphone ASR: Refer to Figure 1. For vocab-
ularies not containing the uncommon words (T07, T08), triphone
systems outperform monophone systems by 3-17% absolute, for all
subjects except M04 (2% intelligibility). For task T06 (uncommon
words only), the monophone systems have better %WC scores (6-
16% absolute) except for subjects F03 and M04. For these very–
low intelligibility subjects, the performance of the two architectures
is comparable. Finally, for tasks T09 and T10, monophone and tri-
phone systems have similar performance in terms of the %WC score.

whole-word vs. monophone vs. triphone ASR: Refer to Figure
2. For both tasks T07 and T08 and all subjects except M04, the
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Fig. 1. Comparison of monophone (‘mP’) and triphone (‘tP’) %WC
scores.

monophone systems have the worst performance among the three
architectures. For M04, the whole-word systems give the best per-
formance on both tasks; for all other subjects, either whole-word
(M09, M05, F02) or triphone (M06, F03) system performs best on
both tasks (except for M07: whole-word score higher for task T07
and vice-versa for task T08).
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Fig. 2. Comparison of whole-word (‘wW’), monophone (‘mP’) and
triphone (‘tP’) %WC scores.

5. CONCLUSION

We see that ASR systems trained specifically on a small amount
of dysarthric speech (2 training tokens per utterance) have demon-
strated recognition accuracies comparable to human listeners. Sec-
ondly, for some medium-sized vocabularies, the whole-word sys-
tems performed as well as triphone systems, indicating that simpler
architectures are as capable as more complex ones for dysarthric
speech recognition. These comparable performances permit the de-
signer to choose from the two architectures: the triphone system is
more flexible and scalable; on the other hand, the whole-word sys-
tem is faster to train.

However, the most interesting outcome of these experiments is

that for subjects with very low intelligiblity, ASR has outperformed
(by a significant magnitude of difference) human listeners as far as
recognizing their speech on small vocabularies is concerned. For
vocabularies of medium size it has been as successful as a human
listener in understanding dysarthric speech. The listeners in intelli-
gibility experiments had two important disadvantages: (a) they did
not know the speaker, and (b) they did not know the vocabulary.
Many of these patient talkers are able to communicate easily with
human listeners who (1) know them, and (2) know from situational
context, what words the subject might be trying to say. These re-
sults show that ASR with the knowledge of talker and vocabulary
ouptperforms human listeners without such knowledge, and that in
many cases, the resulting %WC score approaches ranges that may
be useful for human–computer interaction.
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