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Abstract—Does prosody help word recognition? This paper
proposes a novel probabilistic framework in which word and
phoneme are dependent on prosody in a way that reduces word
error rates (WER) relative to a prosody-independent recognizer
with comparable parameter count. In the proposed prosody-de-
pendent speech recognizer, word and phoneme models are
conditioned on two important prosodic variables: the intonational
phrase boundary and the pitch accent. An information-theoretic
analysis is provided to show that prosody dependent acoustic and
language modeling can increase the mutual information between
the true word hypothesis and the acoustic observation by exciting
the interaction between prosody dependent acoustic model and
prosody dependent language model. Empirically, results indi-
cate that the influence of these prosodic variables on allophonic
models are mainly restricted to a small subset of distributions:
the duration PDFs (modeled using an explicit duration hidden
Markov model or EDHMM) and the acoustic-prosodic observa-
tion PDFs (normalized pitch frequency). Influence of prosody on
cepstral features is limited to a subset of phonemes: for example,
vowels may be influenced by both accent and phrase position,
but phrase-initial and phrase-final consonants are independent of
accent. Leveraging these results, effective prosody dependent allo-
phonic models are built with minimal increase in parameter count.
These prosody dependent speech recognizers are able to reduce
word error rates by up to 11% relative to prosody independent
recognizers with comparable parameter count, in experiments
based on the prosodically-transcribed Boston Radio News corpus.

Index Terms—Acoustic model, ANN, duration, HMM, mutual
information, pitch, prosody, ToBI, word error rate.

1. INTRODUCTION

OES PROSODY help word recognition? Humans lis-

tening to natural prosody, as opposed to monotone or
foreign prosody, are able to understand the content with lower
cognitive load and higher accuracy [1]. For automatic Large
Vocabulary Continuous Speech Recognition (LVCSR), there is
no straightforward answer.

Prosody refers to the suprasegmental features of natural
speech, such as rhythm and intonation. Native speakers use
prosody to convey paralinguistic information such as emphasis,
intention, attitude and emotion. The prosody of a word se-
quence can be described by a set of prosodic variables such as
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prosodic phrase boundary, pitch accent, lexical stress, syllable
position and hesitation, etc. Among these prosodic variables,
pitch accent and intonational phrase boundary have the most
salient acoustic correlates, and may be most perceptually robust
[2]. A pitch accent is an unusually high FO (possibly a local
maximum) or an unusually low FO (possibly a local minimum)
designed to draw attention to the important word [3]. The
presence of a pitch accent correlates with other changes in
the acoustic signal: accented vowels tend to be longer and
less subject to coarticulatory variation [4], while accented
consonants are produced with greater closure duration [5],
greater linguopalatal contact [6], longer voice onset time,
and greater burst amplitude [7]. Knowledge of pitch accent
placement would therefore be useful prior information for
accurate acoustic modeling. Intonational phrase boundaries,
which segment an utterance into intonational phrases, not only
introduce a distinctive pitch contour (called a boundary tone) on
the preceding speech segments, but also affect the acoustic real-
ization of neighboring phonemes: phonemes preceding phrase
boundaries are lengthened considerably [8] and consistently
[9], phonemes both preceding and succeeding intonational
phrase boundaries have more extreme lingual articulations [6],
and vowels following an intonational phrase boundary are more
likely to show a glottalized onset [10].

Prosody is potentially useful in automatic speech under-
standing systems for at least four reasons. First, prosody
correlates with syntax: Price et al. [11] showed that prosody
may be used to disambiguate syntactically distinct sentences
with identical phoneme strings, while Kim ef al. [12] have
demonstrated that prosody may be used to infer punctuation of
a recognized text. Second, prosody correlates with meaning:
for example, Taylor ef al. [13] have used prosody for the pur-
pose of recognizing the dialog act labels of utterances. Third,
prosody is useful for the detection and subsequent processing
of speech disfluencies [14]. Finally, prosody may be useful as
prior conditioning information for the correct phoneme labeling
of an ambiguous acoustic signal.

This paper focuses on the fourth application of prosody: in
this paper, prosody is used as prior conditioning information
for the correct phoneme labeling of an ambiguous acoustic
signal. We expect that with prosody accurately modeled in
both acoustic model and language model, the word recognition
performance will improve.

The correlation of prosodic and phonetic cues is well at-
tested: for example, Cole et al. have shown that the voice onset
time of a voiced stop in a pitch-accented syllable is comparable
to that of an unvoiced stop in an unaccented syllable, thus the
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TABLE 1
SUMMARY OF ALL THE PDF SPLITTING/CLUSTERING EXPERIMENTS CONDUCTED TO ASSESS THE PROSODIC EFFECTS ON THE PDFs OF THE ALLOPHONE MODELS

Experiments Section | PDFs tested Prosodic conditions
How boundaries affect phoneme du- | III-A Duration PDFs Intonational phrase boundary
ration
How pitch accents affect acoustic- | III-B Acoustic-prosodic Pitch accent
prosodic observations (fo) observation PDFs
The joint effects of boundary and | IV-A Duration PDFs and | Intonational phrase boundary
accent acoustic-prosodic and pitch accent

observation PDFs
How prosody affects the tree-based | III-C, Acoustic-phonetic Phonetic and prosodic condi-
clustering of phonetic state observa- | IV-B observation PDFs tions selected automatically by
tion PDFs (estimated from MFCCs) decision trees
Manual splitting of allophone mod- | III-C, Acoustic-phonetic Phonetic and prosodic condi-
els with complexity uncompensated | IV-B observation PDFs tions selected manually based
(ULL), mixture-compensated (MLL) on their contribution to the av-
or triphone-compensated (TLL) erage log likelihood scores

phoneme label is unambiguous only given prior information
about the prosodic label [7]. On the other hand, a number of
papers suggest that it may not be possible to uniquely deter-
mine the prosody of an utterance without prior knowledge of
phoneme content: Wightman et al., for example, suggest that
prosodic phrase boundaries are best detected by comparing the
expected and actual durations of phonemes in each word [15].
Since prosody is ambiguous without phoneme information, and
phonemes are ambiguous without prosodic information, this
paper describes a system that recognizes both at the same time.
Specifically, we propose a set of prosody-dependent allophone
models for speech recognition that effectively capture the
influence of prosody at the phonetic level without significantly
increasing the parameter count of recognizers. To measure the
influence of prosody on the PDFs of allophone models, we
conduct five prosody dependent allophone recognition experi-
ments as listed in Table 1. Details of these experiments and the
results will be reported in the corresponding sections.

To train phonetic models that are aware of prosody, a large
prosodically labeled speech database is required. However, hand
labeling of prosody is known to be a difficult task even with a
well formulated prosody labeling system [16]. Shriberg et al.
[17]-[19] have proposed a different approach that makes use of
acoustic prosodic cues without requiring explicit prosodic la-
beling. In their approach, phonological prosodic events (e.g.,
pitch accents and prosodic phrase boundaries) are not explicitly
modeled. Instead, prosodic cues (e.g., pitch, energy) are con-
ditioned over a set of hidden event variables representing sen-
tence and topic boundaries, disfluency markers, dialog act la-
bels etc. that are strongly correlated with prosodic phonolog-
ical events. The advantage of their approach is that the hidden
event labels are relatively easier to acquire than prosodic labels,
making it possible to build large systems on standard speech
corpora. The disadvantage of their approach is that the relation-
ship between acoustic prosodic cues and syntax or disfluency is

not as predictable as the relationship between acoustic cues and
prosody [9]. As a result, their event dependent acoustic models
can not directly utilize those well-attested prosodic phenomena:
for example, pre-boundary lengthening [15]. Nonetheless, their
prosody dependent systems have achieved better performance
than prosody independent systems on a large scale spontaneous
speech corpus.

The availability of the Boston University Radio News
Corpus, one of the largest corpora designed for study of
prosody [20] makes it possible for us to build linguistically
meaningful prosodic models for speech recognition. The
corpus consists of recordings of broadcast radio news stories
including original radio broadcasts and laboratory broadcast
simulations recorded from seven FM radio announcers (4
male, 3 female). Radio announcers usually use more clear
and consistent prosodic patterns than nonprofessional readers,
thus the Radio News Corpus comprises speech with a natural
but controlled style, combining the advantages of both read
speech and spontaneous speech. In this corpus, a majority of
paragraphs are annotated with the orthographic transcription,
phone alignments, part-of-speech tags and prosodic labels. The
prosodic labeling system represents prosodic phrasing, phrasal
prominence and boundary tones, using the Tones and Break
Indices (ToBI) system for American English [16]. The ToBI
system labels pitch accent tones, phrase boundary tones, and
prosodic phrase break indices. Break indices indicate the degree
of decoupling between each pair of words; intonational phrase
boundaries are marked by a break index of 4 or higher. Tone
labels indicate phrase boundary tones and pitch accents. Tone
labels are constructed from the three basic elements H, L, and
'H, representing high tone, low tone, and high tone followed
by pitch downstep, respectively. There are four primary types
of intonational phrase boundary tones: L-L%, representing
a declaration-final pitch fall, H-L%, representing a medial
pitch in the middle of a longer declarative dialog turn, H-H%,
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representing a canonical yes-no question contour, and L-H%,
representing a word-gap question; the contours !'H-L% and
'H-H% are less frequently observed. Seven types of accent
tones are labeled: H*,'H*,L+H*,L+!H*,L*,L*+H, and
H-+!H*. The ToBI system has the advantage that it can be used
consistently by labelers for a variety of styles. For example,
if one allows a level of uncertainty in order to account for
differences in labeling style, it can be shown that the different
transcribers of the Radio News Corpus agree on break index
with 95% inter-transcriber agreement [20]. Presence versus
absence of pitch accent is transcribed with 91% inter-tran-
scriber agreement. Some accent label distinctions are more
problematic than others: the L* versus H* distinction is quite
robust, while the L. + H* versus L* + H distinction is subject
to considerable inter-transcriber disagreement.

The vast majority of pitch accents in the Radio News corpus
are centered on a high pitch movement (71%) or a downstepped
pitch movement (25%). Dainora [21] argues that !'H and H
movements are not linguistically distinct and should there-
fore not be distinctly recognized. Taylor [22] argues further
that L.* accents are prominent by virtue of their duration and
possibly increased energy, but that they are not characterized
by any pitch contour distinct from the connecting contour of
nonaccented syllables; he advocates for a system in which
all H* and !'H* accents are classified as pitch events (e), and
all L* and unaccented syllables are nonevents (c). Taylor’s
system uses HMMs to model the pitch accents. When neural
networks (including both time-delayed recurrent networks and
feedforward networks) are used [23], we find that L.* pitch
contour is recognized more often as H* than as unaccented.

This paper is organized as follows: Section II presents the
mathematic framework for a prosody dependent speech rec-
ognizer, consisting of word and allophone models dependent
on two important prosodic variables: the intonational phrase
boundary and the pitch accent. The goal of prosody-dependent
word recognition is motivated by an information-theoretic anal-
ysis, resulting in an explicit statement of the conditions under
which prosody-dependent allophone models and prosody-de-
pendent language models jointly act to improve the posterior
probability of the correct word string. In order to avoid large
increases in the parameter count of the recognizer, this sec-
tion proposes a parsimonious architecture in which all observa-
tion PDFs are tied into monophone or triphone classes, except
for the explicit duration PDFs, the acoustic-prosodic observa-
tion stream (pitch), and a selected set of cepstral observations
found to be most significantly affected by prosody. The strength
of the prosody dependence in the allophone models are mea-
sured by various allophone recognition experiments. Section III
considers the empirical evidence in support of specific prosody-
dependent observation distributions. Prosody dependent recog-
nizers that depend on only one prosodic variable (boundary or
accent) are trained using explicit duration HMMs (EDHMMs)
and HMMs to assess the individual influence of these prosody
factors. The training and decoding algorithms of the EDHMM
are given, together with the results of allophone recognition ex-
periments. Based on the theoretical analysis in Section II and the
empirical results in Section III, a prosody-dependent speech rec-
ognizer is trained and tested using the Radio News Corpus, and

results are presented in Section IV. Conclusions are reviewed in
Section V.

II. PROSODY DEPENDENT SPEECH RECOGNITION

The task of speech recognition, given a sequence of observed
acoustic feature vectors O = (o1,...,07), is to find the se-
quence of word labels W = (wy, ..., w)s) that maximizes the
joint probability p(O, Q, W)

(W] = arg maxyy p(0, Q. W) 0

where @ = (q1,...,qzr) is a sequence of sub-word units, typ-
ically allophones dependent on phonetic context. Ostendorf et
al. [24] suggested expanding (1) as

[W] = arg maxyyp(0|Q, H)p(Q, H|W, P)p(W, P)  (2)

where P = (p1,...,pm) is a sequence of prosody labels,
one associated with each word, and H = (hy,...,hr) is a
sequence of discrete “hidden mode” vectors describing the
prosodic states of each allophone. The combination [wy,, P ] is
called a prosody-dependent word label, the combination [g;, h;]
is called a prosody-dependent allophone label, p(O|Q, H)
is a prosody-dependent acoustic model, p(Q, H|W, P) is a
prosody-dependent pronunciation model, and p(W, P) is a
prosody-dependent language model.

The models described in this paper may be understood as
implementations of (2), with parameter count limited through
selective implementation of prosody dependence using both
acoustic-phonetic and empirical selection criteria. This section
describes the information-theoretic motivation for prosody-de-
pendent allophones, and the mathematical structures necessary
to implement a parsimonious prosody-dependent acoustic
model.

A. Information-Theoretic Analysis

Let a prosody-dependent allophone model be defined as
an HMM whose states are conditioned on both phoneme
label ¢; and prosodic state h;. Assume that a prosody-de-
pendent pronunciation model may be pre-compiled so that
each prosody-dependent word label [w,,, p,,] corresponds to
a unique hidden Markov model, created by concatenating an
appropriate sequence of prosody-dependent allophone models.
Let the prosody dependent language model be defined to
be any standard language model (this paper will use bigram
models) describing the probability of [w.,, pr,]| given the his-
tOI'y [wl,pl, ey wm_l,pm_l].

The average modeled mutual information between the true
word hypothesis W and the acoustic observation O may be
defined as

1(0;Wr) = Ew,. 0 {log p(O)p(Wr)

where the expectation is computed over the true joint distribu-
tion of Wy and O, but the probabilities in the fraction are mod-
eled probabilities; thus I(O; Wr) is a measure of the quality of
the PDF model p(O, Wr). Suppose that p(Wr) in (3) is defined
to be the true probability of Wr, so that only the terms p(O)
and p(O, Wr) depend on the quality of the speech recognition
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model. Under this definition, the quantity I(O; Wr) is related
by a constant to the model discriminant function ®(O; Wr)
[25], defined as

O(O; Wr) = Ew, o{logp(Wr|O)}

= EVVT.O {log ])(07—I/VT>A}
/ EW p(O,W)

=—Ew, 0 {bg (Z m) } )

0T _ 0l
‘o p(O,Wr)  p(O|Wr)

where

P(Wi)
p(Wr)
which is the likelihood ratio comparing the ith word sequence
hypothesis W; to the true word sequence Wr.

The discriminant function of a prosody dependent recognizer
can be represented as

Dp(0; Wr) = —Ew, 0 {bg <Z m) } (6)

®)

where
~ maXﬁp(O,W,;7p)
max p(O, Wr, P)
_ pOWi, P)  p(Wi, P)
p(OWr, Pr) ~ p(Wr, Pr)

(7

N

where Py is the prosody sequence that maximizes p(O, Wr, P),
and P is the prosody hypothesis that maximizes p(O, W;, P).
The objective of prosody-dependent speech recognition in
this paper is to create prosody-dependent speech recognition
models such that ®p(O; Wr) > &(O; Wr), thus increasing
the modeled probability of the correct word sequence given the
observation. From (4) and (6), ®p(O; W) > ®(O; Wry) if

Ew,.0 {log <§L ZZ> } <0. (8)

Equation (8) expresses the condition under which prosody-
dependent speech recognition increases the modeled mutual in-
formation I(O; Wr). In order to guide the design and interpre-
tation of experiments in the field of prosody-dependent speech
recognition, it is valuable to spend some time trying to express
the meaning of (8) in words. Loosely speaking, (8) claims that
modeled mutual information improves if 7j; < 7; for most com-
binations of W and Wi, where the word “most” is quantified
by the expectation over Wy of the log ratio of sums over W;.
Re-arranging terms, the condition 7j; < 7; may be written

(pw;wyT)) <p<o,wT|ij>/p<o,gvT>) o1
(P |W;) p(O, W;|P;) [p(O, W;)

Equation (9) expresses the fraction 7; /1; as the product of two
terms.

The first term on the left expresses the improvement,
due to prosody, in the selectivity of the language model.

It is positive, for example, when the true word sequence
is uttered with a highly predictable prosodic pattern, thus
p(Pr|Wz) > p(P;|[W;). This term may be maximized by
modeling only those prosodic labels that are most predictable
from word sequence statistics. In this paper, prosodic labeling
will include intonational phrase boundaries and phrasal pitch
accent. Previous research [26], [27] has shown that intonational
phrase boundaries are well predicted by N-gram word sequence
statistics.

The second term on the left expresses the improvement, due
to prosody, in the selectivity of the acoustic model. It is pos-
itive, for example, when the observation sequence O is better
explained by Pr than by P;. This term may be maximized by se-
lectively modeling only those acoustic features whose distribu-
tions are well predicted by prosodic labeling. Beckman et al. [3]
suggest that talker-normalized fundamental frequency (fo) is
well predicted by the location of pitch accents, while Wightman
et al. [15] suggest that normalized phoneme duration is well pre-
dicted by the location of intonational phrase boundaries. Cole
et al. [7] describe the prosody-dependent modification of the
acoustic-phonetic features (e.g., MFCC) as a reliable effect in
the case of some phonemes but not all phonemes, thus prosody-
dependent modification of the distribution of MFCCs will be
modeled only for an empirically selected subset of phonemes.

The meaning of (8) may therefore be explained in the fol-
lowing words: @ p(O; Wr) > ®(O; Wr) if, most of the time,
the correct prosodic sequence is well predicted by the word
transcription, and the acoustic observation is well predicted by
the prosody. Note that it is possible for a prosody-dependent
speech recognizer to result in reduced word error rate even if the
acoustic model and the language model do not separately lead
to improvements. Even if prosody does not improve the recog-
nition of words in isolation, the likelihood of the correct sen-
tence-level transcription may be improved by a language model
that correctly predicts prosody from the word string, and an
acoustic model that correctly predicts the acoustic observations
from the prosody.

B. Prosody Dependent Allophone Models

Equation (2) proposes that every distinct combination of
the state variables ¢ and h should be modeled using a distinct
acoustic model. In the most straightforward implementation
of (2), a recognizer aware of |h| different prosodic contexts
would require |h| times as many trainable parameters as a
prosody-independent recognizer. In our experiments, we find
that the number of parameters required to directly implement
(2) is rarely justified by a proportional increase in recognition
accuracy. To increase the trainability of the models and reduce
the computational cost, we propose to model only a subset
of phonetic distributions that are known to be most sensitive
to prosodic context. Specifically, we propose to model the
prosody dependence of the phonetic state duration PDFs, which
is known to be affected significantly by intonational phrase
boundary, and the acoustic-prosodic observation PDF, which
models the distribution of the acoustic observation of pitch
accents. The acoustic-phonetic observation PDFs, that is, the
PDFs that model the spectral distribution of the phonetic states,
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ignore prosody by default; only a small set of acoustic-phonetic
PDFs are allowed to depend on prosody. By limiting the effect
of prosody in this way, we create effective models of the most
striking and most often reported prosody-dependent allophonic
variation, without significantly increasing the parameter count
of the speech recognizer.

In the proposed system, the prosody state variable h can be
represented as a two dimensional prosodic vector: h = [a, ],
where a is a discrete variable indicating the pitch accent promi-
nence level of ¢, and b is another discrete variable indicating
the lengthening level of ¢ as affected by the intonational phrase
boundaries. The observation vector O usually contains only
acoustic phonetic observation X (typically cepstral coeffi-
cients) that provide cues for the discrimination of phonetic
units. In the prosody dependent framework, it can be aug-
mented to include an additional acoustic-prosodic observation
Y that contains features (typically pitch) as acoustic cues for
the detection of prosodic events: O = [X,Y].

In this paper, phrase-final lengthening is modeled by condi-
tioning the state residency time or “duration” of an HMM state
on the prosodic variable b. The pitch accent is modeled by con-
ditioning the distribution of the acoustic-prosodic observation
Y on both the phoneme state ¢ and the prosodic variable a. In
order to precisely model prosody dependent phoneme length-
ening, we propose to use a prosody-dependent explicit duration
hidden Markov model (EDHMM). The EDHMM of phoneme
q; under prosodic state b; consists of a sequence of hidden pho-
netic state variables S; = (s;1,-. ., S;n ), each of which persists
for duration d;;, and each of which produces a length-d;; se-
quence of observation vectors denoted O;;. If, as we propose,
the prosodic variables influence only the distribution of dura-
tion and acoustic prosodic observation, then the probability of
observing matrix O; = [O;1,...,0;N] is

p(Oilgi, hi)
= i, Yi|Si, hi)p(Silqi, hi)

p(X,

N
[I»(x,
-

1

Yijlsij, ai)p(dijlsiz, bi)p(Sila:)

XLJ|5LJ a;)p (du|3u )p(Silgi)-

(10)

Yijlsij,a

Equation (10) proposes a parameter sharing strategy across dif-
ferent prosody dependent allophonic models [g;, h;]: the state
acoustic-phonetic observation PDFs p(X;|s;;) are shared re-
gardless of their prosodic status a or b, the state duration PDFs
are shared if they are conditioned on the same value of b (the
same level of lengthening), and the state acoustic-prosodic ob-
servation PDFs are shared if they are conditioned on the same
value of a (the same level of pitch accent prominence). This
way of parameter sharing reflects the phonetic knowledge of
how prosody affects the duration, pitch and spectral distribu-
tion. It helps us constrict the complexity of the acoustic model

and avoid significant increases in parameter count. It is pos-
sible to model multiple levels of prosodic boundaries and promi-
nences using this framework (i.e., increasing the cardinalities
of a and b). However, modeling more prosodic distinctions in-
evitably fragments the training data and makes our approach im-
practical on small corpora. Therefore, we decide that ¢ and b
only take binary values in our final system, which in combina-
tion, create four prosody-dependent allophones of each phonetic
model ¢;, namely: neutral (default), accented, lengthened, and
accented + lengthened.

C. Explicit Duration HMM

In order to enable prosody-dependent modeling of duration,
the hidden Markov toolkit (HTK) was modified in order to
implement a variant of Ferguson’s explicit duration hidden
Markov model (EDHMM) [28]. In the literature, there are two
successful algorithms that explicitly model HMM duration as
random variables by extending the underlying Markov chain to
a semi-Markov chain. Ferguson [28] first proposed an Estima-
tion Maximization (EM) algorithm to estimate a nonparametric
probability mass function (PMF) for the duration of each state.
Levinson [29] later proposed the continuously variable duration
HMM (CVDHMM) in which the state duration probability is
modeled as a continuous gamma density function. As compared
with Levinson’s algorithm, Ferguson’s algorithm requires a
large amount of training data but has no prior assumption on
the parametric form of the duration distribution. Ferguson’s al-
gorithm is also more computationally efficient than Levinson’s
algorithm: Ferguson’s algorithm requires O(NT(N + D)) op-
erations during training, in contrast to O(N?1'D?) operations
required by Levinson’s algorithm, where IV is the number of
states in the HMM, T is the total number of observations in the
example, and D is the maximum allowed state duration.

The details of the algorithms for explicit duration HMMs, re-
quired in order to perform both training and recognition search,
are described in the Appendix. The efficiency of the training al-
gorithm makes it practical to train EDHMMs on a large speech
corpus in an amount of time comparable to standard HMMs. To
verify the performance of EDHMM for prosody-independent
phoneme modeling, phoneme recognition experiments were
conducted on the TIMIT database. 48 phonemes were each
modeled by a 3-state HMM with 3 mixture Gaussians per state,
and with no language model. Observations included energy,
fifteen MFCCs, and their delta coefficients once per 10ms.
Phoneme recognition experiments using a standard HMM
without explicit duration models resulted in 51.0% accuracy;
phoneme recognition experiments using the EDHMM resulted
in 51.9% accuracy. The explicit duration model increases
the total parameter count of each HMM state by D trainable
parameters. The maximum allowed state duration D is chosen
automatically by restricting the dynamic range of the duration
PMF, but is typically 5 < D < 15. In the experiments reported
here, the EDHMM requires roughly 5% more trainable param-
eters than the HMM. In our experiments, we did not find that a
5% increase in the parameter count required any corresponding
increase in the size of the training database.
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D. Prosody-Dependent Word Transcription

In experiments described in this article, the language model
p(W, P) is implemented as a prosody-dependent bigram, i.e.,
M
plwi,p1) [ 2w, pm|wm -1, pm—1)-

m=2

p(W, P) = (11)

The prosodic label p,, carries two types of information: the
pitch accent status of word w,,,, and the position of w,,, within
an intonational phrase. There are eight possible settings of p,,:
a word may be accented or unaccented; the same word may be
phrase-initial, phrase-final, phrase-medial, or it may be a one-
word intonational phrase (both phrase-initial and phrase-final).
Equation (11) is implemented by defining a unique symbol cor-
responding to each possible label vector [wy,, pm]. A prosody-
dependent word transcription may contain prosody-dependent
word tokens of the form W _ab, where W is the word label, a
takes the values “a” or “u” (accented or unaccented), and b takes
the values “i, m, f, 0” (initial, medial, final, one-word phrase).
In this scheme, the sentence “well, what’s next,” uttered as two
intonational phrases with two accented words, might be tran-
scribed as “well_ao what’s_ui next_af.”

The sequence [p,, 1, Pm] takes on | P|? = 64 possible values,
so in theory, a prosody-dependent bigram model learns 64 times
as many parameters as a prosody-independent bigram model. In
practice, most possible combinations of w,, and p,, never occur,
so their probabilities are estimated by backing off to 1-gram
and 0-gram (uniform) distributions; in our experiments, the ac-
tual parameter count of a prosody-dependent bigram model is
slightly less than three times that of a prosody-independent bi-
gram.

The pronunciation model p(Q, H|W,P) is implemented
using a prosody-dependent dictionary. A prosody-dependent
dictionary is a lookup table providing the prosody-dependent
allophone pronunciation of each prosody-dependent word.
Prosody-dependent allophones are tagged in the same way as
prosody-dependent words, i.e., a fully-specified prosody-de-
pendent allophone may have the form P_ab, where P is the
monophone or triphone label, specified in SPHINX notation
[30]. Experiments reported in Section III test the importance of
the prosodic variables both together and in isolation; different
prosody-dependent dictionaries were designed for each experi-
ment, with entries matched to the prosodic variables under test.
For example, to model phrase-final lengthening effects while
ignoring all other prosodic effects, the final vowel (FV) and
final coda consonants (FC) in a phrase final word (W _af, W _uf,
W _ao, or W_uo) are labeled as phrase-final (P_f), while other
phones are labeled as phrase-medial (P_mn).

A phrase-level pitch accent prominence on a multisyllabic
word usually falls on or near the syllable with primary lexical
stress. Exceptions to this rule include emphatic accent, which
may lengthen the entire word, and contrastive accent, which
may be applied to a syllable other than the primary stress syl-
lable. In order to limit the complexity of the recognition model,
experiments reported in this paper ignore these special cases;
instead, the dictionary entry of an accented word contains ac-
cented allophone models only in the syllable with primary lex-
ical stress. Thus, for example, a fully-specified dictionary entry

for “wanted_af” contains the allophone list “w_am aa_am n_am
t_um ix_uf d_uf.”

III. MODELING THE PROSODY INDUCED ALLOPHONIC
VARIATION

A large number of experiments were conducted in order to
specify, as precisely as possible, the effect of prosody on the ob-
servation likelihoods of a speech recognition model. This sec-
tion describes results of these experiments. In particular, this
section will focus on three possible effects of prosody: the ef-
fect of phrase position on allophone duration, the effect of pitch
accent on the acoustic-prosodic observations (pitch), and the ef-
fect of any prosodic variable on the acoustic-phonetic (cepstral)
observations. The goal of these experiments is to determine ex-
actly which observation probability densities should be modeled
as prosody-dependent, given the restriction that total parameter
count of the model must not be substantially increased.

A. Phrase-Boundary Lengthening

Prosody-dependent allophone recognition experiments were
conducted on the Radio News Corpus using allophone models
dependent on intonational phrase position (b) but not pitch ac-
cent (a). In this case, (10) reduces to

N

H p XZ_] |SZ]

Eight experiments compare each of the eight IPB-dependent al-
lophone sets in Table II to a matched boundary-independent (BI)
allophone set. In experiments using the “final vowel” and/or
“final consonant” allophone sets (FV, FC, FVFC), vowels and/or
coda consonants in the syllable before an IPB are marked b =
phrase-final; all other allophones are phrase-medial. In exper-
iments using the IV, IC, or IVIC allophone sets, vowels and/or
onset consonants in the syllable following an IPB are marked
b = phrase-initial, and others are phrase-medial. The ICFV
and IPFP sets include phrase-initial, phrase-medial, and phrase-
final allophones.

For each of the prosodic context definitions in Table II, two
sets of allophone models were constructed: an IPB-dependent
set BD, and a baseline IPB-independent set BI. Both BD and BI
contain the same set of allophones. In BI, the allophones cre-
ated from any given monophone share all parameters and are
in fact identical, whereas in BD, allophones based on the same
monophone share only observation PDFs but have independent
duration PDFs. By comparing the allophone recognition accu-
racy of BD and BI models with a null grammar (every allophone
sequence equally likely), it is possible to assess the strength of
the dependence between phoneme duration and each type of
prosodic context defined in Table II. Table III shows results of
this experiment. Note that figures in different rows are not com-
parable because they are measured under different prosody con-
texts with allophone sets of different sizes.

Table III shows that distinctive modeling of phrase-final
phoneme duration PDFs (FV, FC, and FVFC conditions) sig-
nificantly improves allophone recognition accuracy for both
HMMs and EDHMMs (note that in this result, allophones [g, ]

p(Oilgi, hi i)p(Silgi).  (12)

dz] |S’L]7
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TABLE I
EIGHT DIFFERENT INTONATIONAL-PHRASE-BOUNDARY CONTEXT DEFINITIONS WERE TESTED, WITH DIFFERENT SUBSETS OF PHONEMES ALLOWED TO BE
EITHER PHRASE-INITIAL OR PHRASE-FINAL. NEXT TO EACH CONTEXT DEFINITION ARE LISTED THE RESULTING NUMBER OF ALLOPHONES, THE NUMBER OF
PARAMETERS IN AN HMM-BASED RECOGNIZER, AND THE NUMBER OF PARAMETERS IN AN EDHMM RECOGNIZER

Lengthened allophones | # Phn | HMM # Params | EDHMM # Params
BI None 65 39065 42093
FV phrase Final Vowels 89 39170 42713
FC phrase Final Consonants 91 39240 42824
FVFC || FV+FC 105 39345 43519
v phrase Initial Vowels 87 39247 42713
IC phrase Initial Consonants 83 39219 42784
ICIV IC+IV 102 39401 43462
ICFV || IC+FV 98 39303 43380
IPFP ICIV+FVFC 153 39688 44718
TABLE 1II B. Accent Dependent Phonetic Modeling

IPB DEPENDENT ALLOPHONE RECOGNITION ACCURACY (%) WITH EACH
ALLOPHONE COUNTED AS A DISTINCT TOKEN

HMM EDHMM
BI BD BI BD
FV 25.70 | 33.93 | 26.10 | 34.36
FC 1322 | 274 | 13.61 | 28.02
FVFC | 3.13 | 24.61 | 3.77 | 25.36
IC 28.55 | 25.53 | 29.28 | 25.92
v 31.95 | 30.09 | 32.45 | 30.77
IVIC | 23.15 | 19.10 | 23.57 | 19.71
ICFV | 23.88 | 22.89 | 24.28 | 23.20
IPFP 1.71 | 1219 | 235 | 1291

based on the same monophone ¢ are counted as different symbol
if h is different). Wightman et al. [15] found that phonemes in
intonational phrase final rhymes are significantly longer than
similar phonemes in other contexts; Table III indicates that the
transition probabilities of an HMM and the explicit duration
PMF of an EDHMM are both capable of learning the dis-
tinction between phrase-final and nonphrase-final phonemes.
Conversely, distinctive modeling of phrase-initial phoneme du-
ration PDFs (IV, IC, and IVIC conditions) degrades allophone
recognition accuracy, indicating that HMM and EDHMM
fail to find any systematic duration variation at phrase-initial
position. Non-phrase-initial phones usually appear much more
often than do their phrase-initial counterparts. Therefore, unless
position dependent duration modeling increase the accuracy of
both phrase-initial models and nonphrase-initial models, worse
phoneme recognition performance is expected. It can be con-
cluded from this experiment that IPB dependent lengthening
only happens at phrase-final positions including both final
vowels and final consonants.

Allophonic variation induced by pitch accent was investi-
gated using HMMs and EDHMMs trained to recognize a non-
linearly transformed acoustic-prosodic observation vector.

Fundamental frequency f is extracted from speech by using
the formant program in Entropic XWAVES. The probability
of voicing (PV) is output at the same time as a confidence mea-
sure to the extracted f,. Measured f values are then smoothed
and normalized using the following algorithm. Like most auto-
matic pitch trackers, this raw fo usually contains some amount
of pitch doubling and halving errors. To avoid these pitch dou-
bling and halving errors, a 3 mixture Gaussian classifier, based
on the method proposed by Sonmez [31] is trained on the f
data from each utterance, with mixture component means con-
strained to equal 1/2, 1, and 2 times the utterance mean pitch,
and measured f candidates classified as apparently equal to 2 f
or fo/2 are eliminated. f, measurements with small PVs are
also eliminated, because frames with small PV are usually un-
voiced and result in unreliable pitch measurements. Remaining
fo measurements are normalized and converted to log scale

using the formula
fo =log <@ + 1)
/L

13)

where (1 is the utterance mean pitch. Frames with missing fo
are filled by linearly interpolating fo between available frames,
resulting in a smoothed normalized pitch waveform fg.

fo does not necessarily have a Gaussian distribution. To use
it as an acoustic feature for HMM, we need to transform it to
a new variable Y with the following characteristics: (1) the
values of Y observed during accented and unaccented sylla-
bles are as distinct as possible, and (2) the distribution of Y is
reasonably well modeled by a Gaussian PDF (in our study, we
find that the class-conditional histograms of Y over the training
data have a bell shape). These goals are well approximated by
a multi-layer perceptron (MLP) trained to accept five consecu-
tive measurements of fo as input, and to estimate a nonlinear
function Y (t) = g([fo(t — 2),..., fo(t + 2)]) such that the
values of Y (t) resulting from accented and unaccented frames
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are maximally distinct. Comparing the signals before and after
the transformation, we find that this type of nonlinear transfor-
mation can help reduce the pitch declination effect [32]. In addi-
tion, it is known that pitch accents are often not aligned with the
perceptually prominent syllable. This type of minor pitch-peak
asynchrony can also be modeled by the MLP, which computes
the acoustic-prosodic observation based on a summary of five
consecutive f observations.
If the setting of the phrase-boundary variable b is ignored,
(10) reduces to
N
p(Oilgi, hi) = T[] p(Xijlsii)
j=1

xp(Yijlsij, ai)p(dij|sij)p(Sila:). (14)

HMM recognizers were trained for the purpose of accent-depen-
dent allophone recognition. Three recognizers were designed
using the same set of labels: the label set includes one accented
and one unaccented version of each monophone in the SPHINX
phoneme set. In the accent-independent (Al) recognizer, allo-
phones of the same monophone are physically identical: all
model parameters are shared. Each allophone pair in AD1 and
AD?2 has tied acoustic-phonetic (cepstral) observation PDF
but untied acoustic-prosodic (Y = g¢(fo)) observation PDF.
AD1 and AD2 differ in that AD1 uses 3 mixture Gaussians
for the acoustic prosodic observation PDF, whereas AD2 only
uses a single Gaussian. AD3 is the same as ADI1 except that
it is trained using fo as acoustic-prosodic features without
nonlinear transformation. Allophone recognition results with
no grammar are listed in Table IV. AD1 and AD?2 yield sim-
ilar recognition results in this experiment, indicating that the
acoustic-prosodic observation PDFs can be well approximated
by a single Gaussian. AD3 yields worse allophone recognition
accuracy (20.34%) than does ADI, indicating the effectiveness
of the MLP-based nonlinear transformation.

C. Influence of Prosody on MFCCs

The influence of prosody on the distribution of acoustic
phonetic observations (typically MFCC), if it can be modeled,
would further help increase the distinction among the prosody
dependent allophones. It is worthwhile to determine whether or
not such prosody dependent spectral variation can be modeled
in this corpus to improve the accuracy of prosody dependent
allophones, as phonetic study [4]-[7] has suggested that the dis-
tribution of spectral energy can be greatly affected by prosodic
context.

This aspect of prosody research has been suggested by Lee in
[30] after he successfully modeled the phonetic context depen-
dent spectral variation using triphone models. Lee pointed out
that when more training data are available, triphone systems that
cluster phonetic models based only on phonetic context should
be extended to include additional sources of phonetic variability,
such as syllable position, stress, nonneighboring phones, or in-
terword triphones. Shafran er al. [33] applied a decision-tree
algorithm on a subset of the Switchboard corpus to assess the
influence of various prosodic factors on the phonetic state ob-
servation PDFs of a set of triphones. They found acoustic dif-
ferences primarily associated with segment position at prosodic

TABLE IV
PERCENT CORRECTNESS AND ACCURACY FOR ACCENT DEPENDENT
ALLOPHONE RECOGNITION WITH EACH ALLOPHONE COUNTED AS A DISTINCT
SYMBOL. COLUMN 2 IS THE TYPE OF THE ACOUSTIC PROSODIC FEATURE USED
IN TRAINING AND TESTING AND COLUMN 3 IS THE NUMBER OF MIXTURES
USED FOR THE ACOUSTIC PROSODIC OBSERVATION PDFs

A. P. Feature | # Mix | Corr(%) | Acc(%)
Al None 0 30.81 16.13
AD1 Y 3 37.21 21.93
AD2 Y 1 37.16 21.86
AD3 fo 3 35.66 20.34

constituent onsets and in prominent syllables, and suggested that
prosody-dependent phonetic models should be developed once
a sufficient amount of prosodically-labeled data is available.

In our investigation, we conducted two different types of ex-
periments on the Radio New Corpus to answer the question: are
there prosody dependent spectral variations that can be modeled
to improve the accuracy of allophone models in this corpus?

The first experiment evaluated prosodic questions in a tree-
based allophone clustering algorithm, similar to the algorithms
used by Shafran er al. [33]. Two sets of trees were constructed:
a prosody-dependent tree (TPD) with prosodic questions avail-
able to the allophone clustering algorithm, and a prosody-inde-
pendent tree (TPI) that used only phoneme context questions
in order to perform allophone clustering. Each tree clusters the
state-dependent observation PDFs of the SPHINX monophones
according to an informatic-theoretic measure [34]. TPI is the
standard triphone state clustering tree which asks only questions
regarding the phonetic context of the given monophone (for ex-
ample, the place or manner of articulation of the neighboring
phones); whereas TPD asks questions regarding both phonetic
context and prosodic context. The two experiments were con-
trolled so that both the TPI and TPD systems result in the same
total number of leaf nodes, that is, the recognizer is trained
to learn the same total number of acoustic-phonetic observa-
tion PDFs, regardless of whether or not prosody is used in the
state-tying tree. Experiments were conducted using 750, 1000,
and 1250 total leaf nodes (these numbers are selected arbitrarily
in order to measure the influence of prosodic questions under
different conditions). If some questions regarding prosodic con-
text have a larger influence on the state spectral distribution than
do the questions regarding phonetic context, they are going to
appear closer to the root of the tree, and the monophone recog-
nition accuracy based on TPD should be greater than the mono-
phone recognition accuracy based on TPIL

Only about half of the Radio News Corpus is prosodically
transcribed; for the remainder of the corpus, transcriptions
specify each word’s part of speech and lexically stressed syl-
lable, but not the locations of pitch accents and intonational
phrase boundaries. The tree-based clustering algorithm requires
a large amount of data, therefore it was trained using the entire
Radio News Corpus. The clustering algorithm was therefore
not able to distinguish allophones on the basis of pitch accent or
intonational phrase position. The only prosodic questions avail-
able to the algorithm were 1) is the center/left/right phoneme
lexically stressed or unstressed and 2) is the center/left/right
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phoneme part of a content word or a function word. Strictly
speaking, the second type of questions are not prosodic but
rather syntactic. However, they have strong correlation with
prosodic phenomena as function words are unlikely to be
accented while content words are likely to be accented.

Phoneme recognition accuracies of the TPD and TPI models
will be reported below in Section IV. It will turn out that prosody
dependence aids phoneme recognition accuracy; this result is
not surprising, since the set of questions available to the TPD
clustering algorithm is a strict superset of the set of questions
available to TPI (i.e., all questions asked in TPI clustering are
asked in TPD clustering but not vice versa). A closer analysis of
TPD, however, shows that questions regarding prosody are used
in only about 24% of the trees. The percentage of trees using
lexical stress distinctions increases with increasing parameter
count, from 17.1% in a system with 750 leaf nodes to 21.4%
in a system with 1250 leaf nodes; the percentage of trees using
the function/content part of speech distinction is relatively inde-
pendent of parameter count, with 11.2—-12.4% of the trees in the
750, 1000, and 1250-1eaf systems. The percentage of trees using
either one or both types of distinction grows with increased pa-
rameter count, from 23.6% of trees in the 750-leaf system to
28.1% of trees in the 1250-leaf system. Apparently the use of
information about lexical stress and part of speech aids speech
recognition performance, but the advantage seems to be sig-
nificant only for about 24% of phonemes; for most phonemes,
the clustering algorithm chooses phoneme context questions in
preference to prosodic questions. Examples of phonemes af-
fected by prosody include back vowels and nasal consonants:
back vowels are affected by their own lexical stress (possibly re-
sulting from the vowel reduction effect), while nasal consonants
are affected by the lexical stress of neighboring vowels (possibly
resulting from vowel nasalization and nasal flapping). This re-
sult is partially consistent with Shafran et al. [33], in which they
report that among all the consonants, stop /t/ and nasal /n/ have
the greatest variety given different prosody.

The high data requirements of the first experiment inspired a
second set of experiments with similar objectives, but with pa-
rameter counts very tightly constrained. Consider a monophone
q that may be split into two allophones ¢; and g2 according to
any criterion, including either a prosodic criterion (e.g., accent)
or a phonetic criterion (e.g., manner of articulation of a neigh-
boring phoneme). Let A, represent an HMM trained to represent
the monophone, while A; and A5 are trained to represent the two
allophones. Let D, be the number of parameters in model A,
while D and Dq are the parameter counts of models A; and
As. A measure of the quality of the model A, may be obtained
by computing the average log probability of N, tokens in a test
database independent of the training set, thus

1
[(Oq]Aq) = N, Z log p(O:i|A,) (15)

1 €0,

where O, is the set of test tokens, of size IN;,. The measure
1(O4|A,) may be compared to the average log probability of
the same test data, given the binary distinction A; versus As:

1
[(O4]A1,A2) = A > log p(Oi|Ay)
1€0q

1
+7 O logp(OilA2) (16)
2 1€0>

where it is assumed that O, is the union of O; and Og, and
N, = N1 + N,. Equations (15) and (16) represent comparable
log likelihood measures of two different recognition models:
one model is given by the parameter set A,, while the other
model is given by the union [A;, As]. Thus the following equa-
tion may be used to test the justifiability of an allophone split.
The allophone split ¢ — [q1, g2] is said to be “justified” by a
particular experiment if

Z(Oq|A17A2) >Z(Oq|Aq)+B(Nq»D1-/D27Dq) a7)
where B(Ny, D1, D2,D,) is a threshold for significant im-
provement given by the Bayesian Information Criterion (BIC)
[35]

log N,
N,

B(Ny,D1,D5,D,) = (D1 + Dy — D,) (18)
Notice that (17) differs from most applications of the BIC in that
it is computed using development test data, rather than being
computed using the model training data.

Three experiments were conducted using model comparisons
based on (15) and (16): an uncompensated log-likelihood exper-
iment (ULL), a mixture-compensated experiment (MLL), and
a triphone-compensated experiment (TLL). In the uncompen-
sated experiment, the parameter counts were set to D1 = Dy =
D, = 495 parameters per model (3 states X 3 mixture com-
ponents per state X 55 parameters per mixture), so that the
BIC threshold was set to 495log N/N for a model with N
training tokens. The MLL and TLL experiments use different
techniques to set Dy + Dy = D, so that the BIC threshold
is zero. The MLL experiment sets D + Do = D, by giving
model A, twice as many Gaussian mixture components as A;
or Ap. The triphone-compensated experiment (TLL) splits A,
into either prosody-independent allophones [Apr1, Apr2, Aprs)
or prosody-dependent allophones [App1, App2, Apps], where
the models Apy are defined by phoneme context, and the models
App may be defined by either phoneme or prosodic context.
The total parameter counts are equal: Npy; + Npro + Nprs =
Npp1 + Nep2 + Nppa.

The uncompensated experiment (ULL) tested two prosodic
questions: accent, and intonational phrase position [36]. Each
monophone in the SPHINX monophone set was split into either
two allophones (A; = accented, Ay = unaccented) or three
allophones (A; = phrase-initial, Ay = phrase-medial, A3 =
phrase-final). Equation (17) was satisfied for almost all pos-
sible vowel allophones, thus it was impossible to rule out
any prosodic allophone of any vowel using this experiment.
Equation (17) was not satisfied for all consonant allophones.
Analysis of the results showed that the majority of consonants
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show acoustic evidence for at most three distinct prosodic
allophones. First, the distinction between phrase-final accented
and phrase-final unaccented consonants is clearly unjustified
((17) is not satisfied). Second, the distinction among phrase-ini-
tial accented, phrase-initial unaccented, and phrase-medial
accented consonants is clearly unjustified. Third, both of
these categories seemed to be distinct from the category of
unaccented phrase-medial consonants. These three categories
correspond reasonably well with categories that have been la-
beled in articulatory studies [6] as “lengthened (phrase-final),”
“strengthened (accented or phrase initial),” and “default” con-
sonant articulations, respectively.

The mixture-compensated experiment (MLL) evaluated four
prosodic variables: pitch accent (accented versus unaccented),
lexical stress (stressed versus unstressed), intonational phrase
position (initial versus medial versus final), and part of speech
(function word versus content word). The number of Gaussian
mixtures in A, was increased so that D, = D; + Dy; other-
wise this experiment was identical to the ULL experiment. The
results of ULL and MLL were quite different. Equation (17)
was satisfied for almost none of the allophone pairs considered
in the MLL experiment. The only exception (the only prosodic
allophone distinction that is certainly justified by the MLL ex-
periment) is the distinction between accented and unaccented
function-word vowels (such as /ax/ in “the”). This is a quite in-
tuitive result, meaning that accent condition significantly affects
the acoustic realization of function words.

The triphone-compensated experiment (TLL) evaluated three
prosodic variables (accent, intonational phrase position, and part
of speech), in addition to a list of variables encoding various
binary distinctions among manner categories taken by the left
and right context phones. In this experiment, the prosody-inde-
pendent recognizer contained exactly three allophones of each
SPHINX monophone, [Ap11, Apr2, Aprs], created by splitting
the monophone according to the two phoneme context variables
with the highest contributions to log likelihood. The prosody-
dependent recognizer also contained exactly three allophones
of each SPHINX monophone, [App1, App2, App3], created by
splitting the monophone according to the two phoneme context
or prosodic variables with the highest contributions to log likeli-
hood. The model comparison is therefore compensated ( Npry +
Np12 + Np1z = Npp1 + Nppe + Npps), but compensation is
performed in such a way that the set of distinctions allowed by
the prosody-dependent recognizer is a strict superset of the set
of distinctions allowed by the prosody-independent recognizer.

The TLL experiment is similar in many ways to the tree-based
HMM state clustering experiment. The most important differ-
ence between the two experiments is that, because the TLL
experiment could be performed using a smaller database than
the TPD experiment, it was possible to use a variety of prosodic
questions that required accurate ToBI transcriptions of the data,
including questions about pitch accent and intonational phrase
position. As a result of this increased prosodic flexibility, a
larger percentage of the resulting allophone definitions are
prosody-dependent. In the TLL experiment, for eleven vowels
and diphthongs (/ae,ah,aw,ay,ax,eh,ey,er,ih,iy,ow/), the most
important context questions was pitch accent, and the second
most important question was intonational phrase position.

Among the vowels with enough tokens for evaluation, the only
vowels that were more sensitive to phone context than prosodic
context were /uw/ and /aa/. Both /uw/ and /aa/ were more sen-
sitive to the manner of articulation of the right context phone
than to any prosodic distinction; specifically, both phones were
sensitive to the three-way distinction between stop, liquid,
and other right context phones. Among consonants, only the
unvoiced affricate and stops (/ch,p,t,k/) were more sensitive
to prosodic than phonetic context variables. All four were
sensitive to the phrase-final versus nonfinal distinction, and this
distinction was most important for the phones (/p,t,k/), perhaps
because the aspiration segments of nonphrase-final stops tend
to be heavily co-articulated glide-like segments, while those of
final stops are often acoustically distinctive noise bursts. All
four phonemes were also sensitive to the distinction between
accented and unaccented syllables (a prosodic distinction) and
to the distinction between vocalic and nonvocalic right context
phones (a triphone context distinction); /k/ was more sensitive
to the latter of these two questions, while /p/,/t/, and /ch/ were
more sensitive to the former.

IV. EXPERIMENTS AND RESULTS

In this section, we report the final recognition results for the
prosody dependent recognition system that we proposed in Sec-
tion II.

A. Modeling of Duration and Pitch

Recognition experiments were conducted in order to
test a recognizer with no prosodic distinctions among the
acoustic-phonetic observation PDFs. In these experiments, the
acoustic model p(X,Y|Q, H) contained only two types of
information about prosody. First, HMM transition probabilities
and EDHMM duration PMFs were allowed to depend on the
phrase position of an allophone. Second, the acoustic-prosodic
PDF p(Y|Q, H) explicitly modeled the distribution of nonlin-
early transformed pitch features given phoneme label and pitch
accent status.

In all experiments, a 3-state HMM with no skips is used to
model all the prosody-dependent allophones. The acoustic-pho-
netic observation PDF p(X;;|s;;) in (10) is modeled as a
3-component mixture Gaussian, and the acoustic-prosodic
observation PDF p(Y;;|s;;, a;) is modeled as a single Gaussian.
The baseline prosody-independent phoneme set is created
by eliminating some of the low-frequency function-word-de-
pendent phonemes in the SPHINX phoneme set [30]. A 32
dimensional acoustic-phonetic feature vector consists of 15
MFCC coefficients, energy, and their deltas. The one dimen-
sional acoustic-prosodic feature described in Section III.B is
modeled as a separate stream in HTK.

The prosodically labeled data consist of 300 utterances (about
3 h of speech sampled at 16 Khz) read by five professional an-
nouncers (3 female, 2 male) containing a vocabulary of 3777
words. Training and test sets are formed by randomly selecting
90% of the utterances for training and the remaining 10% for
testing. Ideally, the training and test sets should be selected in
a speaker-independent fashion (i.e., training and test set should
not contain utterances from the same speakers) in order to avoid
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speaker dependent effects. However, the small size of the data-
base makes speaker-independent experiments impractical, thus
we have opted for experiments that include data from all five
speakers in both training and test sets.

To measure the strength of the prosody induced allophonic
variation modeled in the acoustic model p(O|Q, H), we con-
ducted prosody-dependent allophone recognition experiments
on the Radio News Corpus. The reference prosody depen-
dent allophone transcriptions were created by combining the
hand-transcribed phonetic transcriptions with the ToBI prosody
transcriptions. Two sets of allophone models were constructed:
a prosody-dependent set PD, created by splitting each mono-
phone in the SPHINX set into four allophones that implement
a four-way prosodic distinction (neutral, lengthened, accented,
and accented+lengthened), and a baseline prosody-indepen-
dent set PI, created in the similar way as does PD except that the
prosodic distinctions are implemented logically, i.e., the dura-
tion PDFs split from the same phonetic state are tied regardless
of the prosodic context and the acoustic-prosodic observation
PDFs are removed. Although PI contains the same number of
allophones as does PD, it can not detect any acoustic-prosodic
effects from the signal. The difference between the allophone
recognition correctness and accuracy of PD and PI models when
null grammar is used, as given in Table V, reflects the degree
of prosody-dependent allophonic variation that is implemented
in the PD model. Table V shows that modeling prosody depen-
dence greatly improves the allophone recognition correctness
and accuracy with only a small increase in parameter count.

To measure the overall performance of prosody dependent
recognition, we conducted word recognition experiments and
prosody recognition experiments using two types of Acoustic
Models (AM) and two types of bigram Language Models (LM).
The two types of acoustic models are PI and PD which have
been used in the above prosody dependent allophone recogni-
tion experiment. The two types of language models are denoted
as PI and PD as well. Here, PI denotes a LM that contains only
plain words with no prosody tags; and PD is a LM that has the
maximal prosody dependence in which each word can have at
most § variants realizing an eight-way prosody dependent dis-
tinction. We found the entropy of the test text increased from
H(W) = 7.02 bits to H(W, P) = 8.41 bits after prosody de-
pendence is implemented; the number of parameters in the lan-
guage model increased from 5380 to 14 751. The fact that the
cross-entropy did not increase by 3 bits suggests that there is
a strong correlation between prosody and word strings: quite a
large number of words in the test set are uttered with the same
prosodic pattern as they were in the training set. By construc-
tion, this database includes many word string repetitions, thus
word strings in the training data often re-appear in the test data
with the same prosodic pattern. H (W, P) can be made compa-
rable with H (W) by marginalizing over all possible prosody
sequence P. This marginalization results in an entropy of 5.91
bits, 1.11 bits smaller than H (W) [37]. Consistently with this
entropy reduction, we found that with the same acoustic model
(PD), the language model PD can improve word recognition by
about 0.6% over the language model PI, as shown in Table VI.
After switching to acoustic model PD, the word recognition
can be further improved because the interaction between the

TABLE V
PERCENT ALLOPHONE RECOGNITION CORRECTNESS AND ACCURACY ON
PROSODY DEPENDENT ALLOPHONES, AND NUMBER OF PARAMETERS OF THE
ALLOPHONE MODELS. BOTH PI AND PD CONTAIN 204 ALLOPHONES

HMM EDHMM
Corr | Acc | # para | Corr Acc | # para
PI 14.05 | 2.38 | 39000 | 14.32 | 2.68 | 43414
PD | 33.74 | 189 | 39789 | 33.76 | 19.62 | 47053

prosody-dependent acoustic model and prosody-dependent lan-
guage model increases the likelihood of the word hypotheses
that are prosodically plausible and reduces the likelihood of the
word hypotheses that are prosodically invalid. This statement is
supported by Table VI that shows the word error rate (WER) of
PD+PD+EDHMM has been reduced by about 1.8% absolute
(6.9% relative) against the baseline system PI+PI+HMM.

B. Prosody-Dependent MFCC Distinctions

The second set of experiments used hidden Markov models to
represent only prosody-dependent distinctions in the acoustic-
phonetic observation PDF p(X|Q, H ). Two sets of experiments
were conducted. One set of experiments used the tree-clustered
allophone models constructed in the tree-based prosody-depen-
dent experiment (TPD) reported in Section III.C. The second
experiment used the models constructed manually, based on a
log-likelihood improvement criterion, in the triphone-compen-
sated log-likelihood experiment (TLL) reported in Section III.C.

Both experiments TPD and TLL use standard three-state
hidden Markov models, with no explicit duration model, and
no acoustic-prosodic observation PDF. In both experiments,
the total number of HMM states is controlled, so that the
prosody-dependent (PD) and prosody-independent (PI) recog-
nizers are allowed to have approximately the same number of
total recognizer parameters. In both experiments, allophones
in the PI recognizer are distinguished exclusively on the basis
of phoneme-context questions, while allophones in the PD
recognizer may be distinguished on the basis of either phoneme
context or prosodic context; thus the questions available during
the design phase of the PD recognizer are a strict superset of the
questions available during the design phase of the PI recognizer.
The two experiments differed in two important respects. First,
the TLL system used a larger selection of prosodic context
questions. Second, the TPD system allows context-dependent
splitting and tying of individual HMM states, while the TLL
system allows splitting only of complete 3-state allophone
models. In fact, the TLL system is constrained to use exactly
three allophones for every SPHINX monophone.

Table VII lists phoneme recognition accuracy of the tree-clus-
tered HMM allophone model sets PPI (created from TPI) and
PPD (created from TPD) at three levels of recognizer com-
plexity. The three levels of recognizer complexity are deter-
mined by the total number of HMM states in the recognizer,
including all allophone models: the three levels of complexity
are characterized by 750, 1000, and 1250 total HMM states, re-
spectively. For a given level of recognizer complexity the PPD
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TABLE VI
PERCENT WORD ERROR RATE AND PERCENT ACCENT AND INTONATIONAL
PHRASE BOUNDARY (IPB) ERROR RATE USING PI AND PD ACOUSTIC MODELS
IN COMBINATION WITH PI AND PD LANGUAGE MODELS

AM | LM | HMM | EDHMM
Word PI PI 25.11 24.85
PI | PD | 2448 24.33
PD | PD 23.50 23.38
Accent | PI PI 44.59 44.63
PI | PD | 2325 23.08
PD | PD | 2039 20.35
IPB PI PI 15.53 15.57
PI | PD | 14.67 1447
PD | PD | 1451 14.35

allophone set has better phoneme recognition accuracy than the
PPI allophone set.

Table VIII lists word error rate of the triphone-compensated
HMM allophone model sets. Because this experiment required
a far smaller number of decision trees than the TPD experi-
ment (one per phone instead of one per state), it was possible to
train the recognizer on the small ToBI-labeled part of the Radio
News Corpus, and therefore it was possible to use a much wider
variety of prosodic context questions than the set of questions
considered in Table VII. In this experiment, allowing the use of
prosodic context in the definition of an allophone model results
in an 11% absolute reduction in word error rate.

V. CONCLUSION

The phonetic and linguistic literature on prosody suggests
two hypotheses about the interaction between prosody and word
recognition. First, prosodic and phonemic context jointly influ-
ence the duration, the pitch and the short-time spectrum of a
phoneme. Second, prosody is constrained by word strings (and
vice versa). In this paper, a prosody dependent speech recog-
nizer that models word and prosody in a unified probabilistic
framework is proposed to test if modeling prosody as hidden
variables in an HMM based speech recognizer would improve
word recognition. Our analyzes and experiments indicate that
explicit models of prosody only yield statistically significant
reductions in word error rate if the prosodic variables are con-
strained by explicit models of both acoustic-prosodic interac-
tions and prosodic-language interactions.

Our approach is motivated by an information-theoretic
analysis, showing that prosody dependent recognition can
increase the mutual information between true word hypothesis
and acoustic observation by utilizing the interaction between
the acoustic model and the language model of a speech rec-
ognizer. The influence of prosody on phonetic distribution
is investigated experimentally. Experiments demonstrate that
prosody (the intonational phrase boundary and the pitch accent)
significantly affects the duration and the pitch of all tested
allophones. Modeling of prosody-dependent influences on
the short-time spectrum (e.g., MFCC) is much more difficult.

TABLE VII
PHONEME RECOGNITION ACCURACY (%) OF THE ALLOPHONE SETS PPI AND
PPD WITH 750, 1000, AND 1250 DISTINCT HMM STATES

750 | 1000 | 1250

PPI | 39.00 | 38.61 | 38.44

PPD | 39.14 | 39.83 | 38.77
TABLE VII

WORD ERROR RATE (%) OF THE PROSODY-INDEPENDENT AND
PROSODY-DEPENDENT RECOGNIZERS DEVELOPED IN THE
TRIPHONE-COMPENSATED LOG-LIKELIHOOD-BASED (TLL) EXPERIMENT.
EACH RECOGNIZER USES A TOTAL OF 138 ALLOPHONES: THREE
ALLOPHONES OF EACH PHONEME

Word Error Rate
36.2%
25.4%

Context Definition

Triphone Context Only

Triphone and Prosodic Contexts

Experiments certainly rule out any acoustic distinction between
accented and unaccented phrase-final consonants, or between
accented and unaccented phrase-initial consonants; this finding
seems to correspond with the strengthened versus lengthened
distinction proposed in earlier studies of speech articulation.
In comparisons with comparable parameter counts for both
prosody-dependent and prosody-independent recognizers,
other prosodic distinctions seem to be useful only when they
are available as questions to be asked by an allophone clus-
tering algorithm; prosodic questions are selected more or less
frequently by the clustering algorithm depending on the variety
of prosodic and phonetic questions available to the clustering
algorithm.

To accurately model phoneme duration, we implement the
recognizer using the explicit duration hidden Markov model
(EDHMM) and compared it with systems using HMM. We find
that explicit phoneme duration PDFs are far more precise (lower
in entropy) if prosodic context is taken into consideration. To
model pitch accent, a new acoustic prosodic feature, generated
by an ANN from normalized pitch, is incorporated into the
acoustic observation, and is modeled by a single Gaussian
PDF. In word and prosody recognition experiment on the Radio
News Corpus, we find that the proposed prosody dependent
recognizers reduce word error rate by as much as 11% over
prosody independent recognizers with comparable parameter
count.

Our research clearly demonstrated that linguistically well-at-
tested prosodic phenomena (such as pre-boundary lengthening
and pitch accents) can be modeled in HMM based speech rec-
ognizers to improve word recognition performance with careful
feature normalization and model parameterization.

APPENDIX
TRAINING AND DECODING ALGORITHMS FOR EXPLICIT
DuRrATION HMM

In order to provide sufficient background for those without
access to Ferguson’s paper [28], (19)—(35) and (38)—(41) review
Ferguson’s EDHMM training algorithm. Equations (36)—(37)
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and (42)—(45) describe our extensions of Ferguson’s algorithm,
created for the purpose of applying this algorithm in contempo-
rary continuous speech recognition.

In [28], the forward probabilities («, «*) and backward prob-
abilities (3, 3*) are defined as follows:

Oét(i) = PT{OlOQ e Ot

and state i ends at ¢} (19)
af (i) = Pr{O10,...0;

and state i starts at ¢ + 1} (20)
Bi(i) = Pr{O110¢42...Or,

given that state i ends at ¢} 2n
B (i) = Pr{O4+10¢42 ... O,

given that state i starts at t +1}  (22)

where ¢ is the time index, % is the state index, and O is the obser-
vation vector at time ¢. The forward and backward probabilities
can be computed recursively with proper initialization

N

a:f(j)zz +(i)a(j]i) (23)
Zat - [i)b(Ot—r41-..O¢li) (24)
T;t

Be(i) = Z a(jlé)B¢ () (25)
Zﬁr-q-r Db(Os41 - Orirli) (26

T<t

where a(j|7) is the transition probability from state 7 to state
J,d(7]7) is the probability of staying in state ¢ with dura-
tion 7, and b(O105 ...O|i) is the probability of observing
0105...0; in state 7. Under these definitions, Si(¢), the
expected number of times state 7 started at time ¢ or before, and
E,(i), the expected number of times state ¢ terminated before
time ¢, can be computed

i) = Z k(i) (27)
= 3 ar()B()/P 28)

where P is the probability of observing O10s ... Or given the
current set of model parameters. The state residence probability
vt (%), the probability that state 7 is used to produce O, can be
computed as

V(i) =

The following statistics are accumulated across all examples of
the phonetic models under re-estimation:

Sy(i) — Ey(i). (29)

C(‘J):ZZ at ; )/Bt( )

r=1t=1

(30)

R T o b(Orss ..
- Z Z P,

r=1t=1

Ot+‘r |i)ﬂt+‘r (L)

(3D

where 7 is the index of the examples and R is the total number of
examples. The transition probability a(j|7), the duration prob-
ability d(7]¢), the mean p; and covariance matrix ¥; of the ith
state can be re-estimated as

=SSN o) (32)
" YLy Clig)
7 y C(LvT)
ATl = 5o 33
i) = 5 .
R T, r -
fii = ZT:R} thz}r% (Tt)Ot a
Zr:l Zt:l Y (t)
§. - S Sy v (0(0F = i) (OF = i)' 0

Y ()

When the observation probability distribution is modeled by
a mixture Gaussian with M components, the residence prob-
ability of the kth mixture component can be computed using

c]kN( Lljfjk?zjk)
S ciiN (O, wjr, i)

where c;y, is the weight of the kth mixture component of state j
and can be reestimated as

v (k) =7 (4) (36)

R T, T/
6]k — Zr:l Zt:l ’Yt (.7/ k) . (37)

Z§:1 ZtT;1 ZkM=1 ’Y{(jv k)

The decoding algorithm of EDHMM has a form that is
slightly different from the standard Viterbi algorithm due to the
nature of the semi-Markov chain. In analogy to forward and
backward probabilities, the maximum a posteriori probabilities
can be defined as

6(1) = maxPr(010s ... O,

and state i ends at time t) (38)
67 (1) = maxPr(010; ... 0,
and state ¢ starts at time ¢ + 1). (39)

Similar to the forward and backward algorithm, the maximum
a posteriori probabilities can be computed recursively

(40)
(41)

5 ) = max8,(i)ali)

60(i) = max 57 ()d(7|)b(Or 11 - - Oili).

For backtracking, all the arguments that maximize (40) and (41)
need to be stored in memory. Define

0 (42)
(T)b(Or—rt1... Oli) (43)

Pi(j) = arg max;6;(i)a(j
(i) = argmax, 6;_ (i)d
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where 1);(7) stores the most likely state 7 from which the transi-
tion into state j occurs, and (;(%) stores the most likely duration
of state . To recover the best path, the following recursion can
be used starting from ¢t = T’

7 = Cila)
Gy = Yrr; (7).

(44)
(45)

The Viterbi algorithm introduced above requires (D + N)/N
times more operations than does the standard Viterbi algorithm,
provided that all the arguments required in (41) are stored in the
memory.
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