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Abstract 
This paper presents a hybrid model to understand 
spontaneous speech by combination of speech connotation 
and denotation analyses. The testbed of the approach is an 
intelligent tutoring system (ITS) collected by Wizard-of-Oz 
(WoZ) simulations. The children users are inexperienced 
and their utterances are often dysfluent and have loose 
grammar structure. To robustly understand spontaneous 
speech in the tutorial environment, we categorize the user 
utterances into 30 tutoring events, which can reflect the 
content meaning of utterances in a broad and shallow way. 
The objective of this study is to classify utterances into the 
target events. The tutoring event classification integrates 
speech connotation analysis and speech denotation analysis. 
The speech connotation analysis intends to model the 
cognitive states of students by three classes: confidence, 
puzzlement, and hesitation. The speech denotation analysis 
intends to compute the event-utterance similarity based on 
the TF•IDF vector of some pragmatically and semantically 
salient words embedded in the utterances. We define salient 
words by those words that contain novel information neither 
presupposed by the interlocutor nor denoted in the 
precedent part of the utterance. We used speech and 
transcribed text for experiments, and achieved 75.5% 
accuracy when the salient words were manually annotated. 
The accuracy reduced by 15.4% relative when the salient 
words were automatically extracted. 

Introduction   

The application platform for the work described in this 
paper is an intelligent tutoring system in basic math and 
physics, designed for children of elementary and early 
middle-school ages (Zhang, et al., 2004). The complete 
system does not exist; experiments described in this paper 
make use of data acquired through Wizard-of-Oz 
simulations, using a mock-up of the finished tutoring 
system. 
  The interpretation of children’s speech in the ITS 
dialogue scenario requires robustness. Adult users of a 
typical dialogue system (e.g., for purchase of air travel or 
financial instruments) are usually able to learn, over a 
number of repeated interactions with the system, what 
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actions are possible at each stage of the dialogue. By 
contrast, children users of our intelligent tutor are 
perpetually naïve with respect to the future content of the 
dialogue. Each child paticipates in at most three experiment 
sessions and each session has different tutorial content, 
because we do not ask children to relearn knowledge that 
they have mastered. Moreover, we encourage children to 
participate in our experiments and instigate their interestes 
in scientific learning by asking them open-ended questions 
rather than close-ended questions. For example, when the 
child is turning gears and the tutor wants to ask the child 
about the motion of the gears, he usually does not ask 
questions requring single correct/wrong answers, e.g., In 
which direction are the gears turning? Instead, he would 
ask What are you noticing?  
  Since children are not familiar with the experiment 
contents and the answers to open-ended questions are 
usually longer and more complicated than those to close-
ended questions, their utterances are even more incoherent 
and dysfluent than is typical in interpersonal conversations. 
The utterances usually include loose grammar structure, 
fragmentary, restart, repair, meaningless speech (e.g., That 
if the...), and repetition. For example, Ahmm when 
you...after it goes around once, the other one goes around 
the same, the same, I mean it goes around...you know you 
only have to spin it around once, and that makes sense 
basically because they are the same size. Therefore, we 
need to understand children’s heavily dysfluent and 
ungrammatical speech in a robust way. The existing SLU 
techniques usually concentrate on extracting semantic 
concepts embedded in spoken utterances. The extraction of 
semantic concepts requires appropriately segmentating text 
into syntactically legitimate units, and then selecting a 
semantically correct result from a potentially large number 
of syntactically legitimate candidates. Therefore, it is 
inefficient in dealing with the inputs that are outside of the 
system’s grammatical coverage, if the grammar can be 
predefined. 
  In this tutoring scenario, we robustly understand 
spontaneous speech by categorizing user utterances into 
tutoring events. Two students worked together to 
categorize the content meaning of user utterances into 30 
tutoring events. Their work was based on speech 
perception, transcription, and dialogue context. Some of 
the   



   Table 1: Some tutoring events and example utterances 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
tutoring events and their sample utterances are listed in 
Table 1. The tutoring events reflect the content meaning 
of speech in a shallow and broad way: (1) Sometimes an 
utterance is long, dysfluent, loosely grammatical, and even 
incoherent, then it is very hard to derive the exact meaning 
of the utterance. In this case, we require interpretation to 
be only approximately correct, which only require the gist 
(i.e., the basic content) of the utterance to be detected. In 
the following example (T is tutor and U is user), 
 

 T:   Why do they turn in the same direction? 
U:  Because of the color, well, the way you put on 

them.  Because if I took both of the big ones like 
this, and turn them, um...the yellow side, and I spin 
both of them, and they would still be on the same 
side. 

 

 
it is unable to obtain the exact meaning of the user’s 
utterance. We can only get a rough estimate on what the 
user is saying: he is talking about the line up of gears 
using their color pattern. (2) The overall meaning of the 
spoken messages sometimes provides sufficient 
information for response. For example, when the tutor is 
giving a suggestion on the user’s action (e.g., Can you 
make it so both the red parts of gears are closest to you, 
like this?), the tutoring event reject (e.g., I don’t know I 
can’t move I can’t easily move this big one.) or accept 
(e.g., Yes, I can.) are able to summarize the user’s 
response to the tutor’s suggestion so as to help the 
computer make appropriate response. The objective of 
this study is to robustly understand spontaneous utterances 
by categorizing each utterances into one of the 30 tutoring 
events. 

Tutoring Event Description Example 
IrreleventQuestion The question is irrelevant to the 

experiment content 
U: Do you guys have a TV here? 

AskForPlayInstruction A question requesting the instruction 
on how to play the Legos 

U: Do I have to use all the beams? 

IncompleteAnswer Incomplete answer to a question on 
spinning speed or direction 

T: You’ve tried all these 2 gear 
combinations. So why do you think it is? 
Why do you think it happens? 
U: The stronger the weaker, no, the 
bigger the weaker, the stronger... 

SpinDirection Talk about the spinning directions T: In what direction does the medium 
gear push the small gear? 
U: Umm, it pushes it in the same, in the 
opposite direction that the left gear does 
the center gear. 

SpinSpeed Talk about the spinning speed and 
turning times 

T: How did you know that? 
U: The big gear for every one turn, the 
small gear turns five times.  

ColorLines Each gear is painted with different 
pairs of colors to bring children the 
convenience to decide if gears are 
lined up. 

T: What did you find? 
U: When you change them they change 
colors. When you match them up they 
stay the same colors when you match 
them up. 

ArithmeticComputation Perform arithmetic computation T: Do you know the relationship between 
8 and 24? 
U: 8 times 3 is 24. 

Accept Accept the suggestion, request, or 
opinions of the tutor 

T: Can we start with the gears like this 
again? 
U: Yes, let’s try again. Let’s try. 

RequestToCount Request the tutor to count the 
spinning times 

U: Let’s count, let’s count to two this 
time. 

VoidMeaning The utterance is not meaningful T: What else do you notice? 
U: That if the… 

ExplainAction The user explains what is being done U: I’m gonna replace the 40 gears with 
the 24 gears. 



Related Work 

The strategy of using tutoring event to understand spoken 
language in the tutoring scenario is topic identification in 
spoken language understanding. The purpose of topic 
identification is to detect semantic concepts from an 
utterance, and then classify the utterance to one of the 
predefined categories. A semantic concept can be 
composed of a syntactic constituent or a single word. Topic 
identification has been successfully used in automatic call 
centers or call routers. For example, spontaneous speech is 
understood by automatic detection of a set of salient 
grammar fragments, each of which is a finite-state-machine 
cluster of semantically similar salient phrases with variable 
length. The salient grammar fragments are then used as 
textual features for call-type classification (Arai, et al., 
1998; Gorin, et al., 2002). The vector space model is 
another method applied to the automatic call type 
classification (Chu-Carroll and Carpenter, 1999). The call 
router uses desired destinations and non-stop words 
extracted from caller requests to compose a feature vector 
space. In the routing matrix R, each element Rm,n of R 
represents the degree of association between the mth 
relevant term and the nth destination computed by the tf•idf 
measure. In addition, researchers extracted semantic 
concepts by weighted finite-state transducer, and then 
identified the calls with a multi-layer perceptron neural 
network given a vector of binary values indicating the 
existence of the predefined concepts (Wutiwiwatchai and 
Furui, 2004).  Unlike parsing methods, topic identification 
ensures utterances to be classified regardless of the 
utterance length and the complexity of linguistic structure.  

Corpus Analysis 

Our ITS corpus consists of 714 utterances, containing 
approximately 50 mins of relatively clean speech. On 
average each utterance has 4.2s speech and 8.1 words. The 
vast majority of the utterances contain between 1 and 20 
words, while the longest utterance has 57 words. The 714 
utterances of the ITS corpus can be partitioned into 58 
single-word utterances, 26 single-phrase utterances (such as 
how-many?), 22 utterances that are merely repetitions of 
the human wizard, 19 utterances that are not semantically 
meaning, and 589 non-single word/phrase utterances 
containing novel information. We use the 630 (589 novel- 
meaning utterances, 22 repetitions of the tutor, 19 
semantically void utterances) non-single word/phrase 
utterances for tutoring event classification. The task 
perplexity provides a measure of the difficulty in 
classifying samples drawn from their distribution. The 
probability distribution of the tutoring events has an 
entropy of 4.49. Therefore, our task perplexity is 2H(x) = 
22.52. 

Strategy 

Speech has broad spectrum in terms of information 
revealing the intentions of the speaker: explicit literal 
meaning and implicit connotation. For a spoken message, 
the semantic content explicitly elicited is referred to as its 
denotation, while the internal conditions of the speaker, 
such as emotion, attention and attitude, are part of the 
message’s connotation. Speech in our ITS corpus carries 
information closely related to the student’s cognition, 
which reflects the student’s mental activities during the 
process of knowledge acquisition. We categorize the 
cognitive activities of students into three states: confidence, 
puzzlement, and hesitation. Confidence means the users 
answer questions or explains their actions in confident 
mode, or make commands. Puzzlement means the users ask 
questions or states the lack of knowledge. Hesitation means 
the users answer questions in hesitant or uncertain mode. 
The cognitive states are classified based on the lexical, 
prosodic, spectral, and syntactic analyses (Zhang, et al., 
2004), and then information fusion by a decision tree 
(Rulequest Research, 2004). 

 The tutoring events can be recognized more efficiently 
if one has knowledge of the user’s cognitive state. This is 
because: 
1. Many tutoring events are typically associated with 

particular cognitive states. For example, hesitation is 
more likely to accompany a tutoring event related to an 
incomplete answer (e.g. I saw the …yellow part…) or a 
wrong answer (e.g., It…I think it goes around… one 
and a half times) than a correct answer (e.g., The large 
gear has five times as many teeth as the small ones); 
puzzlement is a strong indicator of question-related 
tutoring events (e.g., Do I have to use all the beams?). 

2. Compared with adult’s speech, children’s speech has 
very different acoustic characteristics, which cause 
degradation in speech recognition performance 
(Narayanan and Potamianos, 2002). The high word 
error rate of speech recognition brings difficulty and 
inaccuracy to subsequent understanding. The case is 
worse especially when the verbal content is hard to 
recognize or interpret. For example, when a user is not 
certain how to answer a question, his/her speech may 
therefore be dysfluent and incomplete, resulting in 
higher speech recognition word error rate. However, 
hesitation is easy to get recognized using prosodic and 
spectral clues that are directly derived from the speech 
signals. The hesitation recognition helps to classify 
tutoring events and understand the user’s situation. 

 
As shown in Figure 1, the tutoring event classification 
system uses a hybrid model that integrates speech 
connotation and speech denotation by a decision tree. The 
speech denotation analysis module consists of three 
components: salient word extraction, tutoring event 
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                                    Figure 1: Architecture of the tutoring event classification system. 
 

modeling, and semantic similarity measure. We describe 
the three components in detail in the next section. 

Speech Denotation Analysis 

Salient Word Extraction 
In this study, we intend to automatically detect the 
pragmatically and semantically salient words that contain 
novel information neither presupposed by the tutor nor 
denoted in the precedent part of the utterance. For 
example (the salient words are marked with bold),  

T: What happens to the different gears as you spin the 
one at the end? 

 U: They move with the single gear that I’m spinning. 
 T: Oh, are you having fun? 
 U: Yeah, it’s kind of interesting. 
The highlighted or unexpected constituents within an 
utterance are often marked by pitch accents (Kadmon, 
2001). The prosodic features closely associated with pitch 
accent are duration, pitch, energy, and spectral balance 
cepstral coefficients (Ren, et al., 2004). In addition, part-
of-speech (POS) is used as an information source since 
function words usually are not salient by not containing 
novel information. POS of all words in the ITS corpus is 
first tagged using an automatic POS tagger (Munoz, et al., 
1999), and then is manually checked against the tagging 
standard in Treebank-3 (Santorini, 1990). 
  The semantic meaning of words is the direct 
indicator of novelty. Let Ni denote the novelty of word wi 
given the dialogue context. We compute Ni by the 
minimum of dissimilarity between wi and other words in 
the set S, where S consists of those words appearing in the 
tutor’s presupposition and those precedent of wi in the 
utterance, i.e. 
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Research in computational linguistics has developed 
various methods to compute the degree of semantic 
similarity between a pair of words. The methods are 
basically divided into two strategies: (1) ontology 
hierarchies (e.g., Lee, et al., 1993; Sussana, 1993; Resnik, 
1995; Jiang and Conrath, 1997)—ontology is a structural 
system of categories or semantic types, so that knowledge 
about a certain domain can be organized through the 
categorization of the entities of the domain in terms of 
semantic types; and (2) corpus statistics (e.g., Lin, 1998; 
Pantel and Lin, 2002; Thelen and Riloff, 2002; Terra and 
Clarke, 2003)—three statistics are commonly employed to 
model the similarity of words (Higgens, 2004): 
 
Topicality assumption: similar words tend to have the 

same neighboring content words. 
Proximity assumption: similar words tend to occur near 

each other. Word senses are ultimately grouped 
according to proximity of meaning. 

Parallelism assumption: similar words tend to be found in 
similar grammatical structures. 

 
Application-Oriented Ontology. Designing ontology 
actually means to determine the set of semantic categories 
which properly reflects the particular conceptual 
organization of the domain. In this study, we adapt 
WordNet, a general linguistic resource, to our ontology 
construction in an application domain. Partial of the 
ontology is shown in Figure 2 using a tree structure. Then 
we employ the edge-based method, in which an edge 
represents a direct association between two concepts, to 
compute the distance between a pair of words in the   
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                 Figure 2: Partial hierarchy of the application-oriented ontology.
 

ontology. Generally, the distance shrinks as one descends 
the hierarchy, since differentiation is based on finer and 
finer details (Jiang and Conrath, 1997). Therefore, we 
propose the following weighted edge distance measure: 
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where sen(w) denotes the set of possible senses for word 

w in case w has multiple senses; 
21 ,ccd  is the mean depth 

of nodes c1 and c2 in the hierarchy; len(c1, c2) is the 
smallest number of edges connecting c1 and c2; 

�  is 
constant and we choose �  = 3.0 here. 
 
Corpus Statistics. We use GigaWord, a billion-word 
archive of English newswire text and distributed by the 
Linguistic Data Consortium, as the text database for 
corpus statistics. Given a context },...,,{ 21 nwwwC ′′′= , a 

pair of words w1 and w2 are more semantically similar if 
they are more likely to co-occur with the words in the 
context. Therefore, the similarity between w1 and w2 can 
be computed by the cosine value between the two partial 
mutual information (PMI) vectors corresponding to w1 
and w2 (Pantel and Lin, 2002). Then we have our 
dissimilarity measure: 
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where )()( 21 wCwCC ∪= , C(w1) and C(w2) are the 
context of w1 and w2, respectively, and 
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Knowledge Combination. The computation of word 
semantic dissimilarity is a combination of lexical 
semantics and corpus statistics by linear interpolation 
 
  ),()1(),(),( 21221121 wwdiswwdiswwdis λλ −+= ,     (5) 
 
where dis1 and dis2 are the peak-normalized word 
distances based on the ontological method and the 
statistical method, respectively; 

�
 is constant. The 

prerequisite to use corpus statistics is that there must be at 
least two contextual words for a given pair of words (w1, 
w2). Otherwise, dis2 will be 1 (# of contextual words is 0) 
or 0 (# of contextual words is 1). If the prerequisite cannot 
be satisfied, then dissimilarity is computed using only the 
ontology-based method.  

Prosodic observations, POS tagging, and semantic 
novelty measure are integrated using a time-delay 
recurrent neural network (TDRNN). TDRNN is a neural 
network that models the dynamic context using a 
combination of delayed input nodes and delayed recurrent 
nodes (Kim, 1998).  

Tutoring Event Modeling 
Each event model consists of a set of salient words 
extracted from the component utterances of that event. We 
notice that some salient words share common attributes, 
and the clusters of these salient words are more robust 
representative than the salient words themselves. We call 
these clusters salient concepts, some of which are listed in 
Table 2. In addition, the multiple tenses of a word are 



clustered, e.g., ‘push,’ ‘pushes,’ and ‘pushing’ are 
clustered together. 
Table 2: Some semantic concepts and their component 
salient words 
Semantic 
Concepts 

Component Words 

Color blue, color, colors, grey, red, 
red’s, reds, white, yellow, 
yellow’s yellows 

Fraction a-half, a-quarter, half, quarter 
Meet Even, evens, line, lined, meet, 

meeting, touch, touching 
TurnTimes once, twice, X-times (X denotes 

digit) 
 

Each event model is represented by E = {w1, c1, w2, 
c2…wn, cn}, where c1…cn are salient words/concepts 
extracted from the component utterances of event E, and 
w1…wn are the corresponding weights derived by the tf • 
idf method (Sparck Jones, 1972), i.e. for ci and Ej,  

)(log2 iijij idftfw •= ,         (6) 

where tfij is the percentage of utterances containing ci in 
event Ej, idfi is the frequency of events containing ci, and  
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Semantic Similarity Measure 
The semantic similarity between an incoming utterance 
and each of the tutoring event candidates is measured by 
lexical similarity, which promotes an unstructured 
approach better reflecting the unconstrained nature of 
human language. In computing the event-utterance lexical 
similarities, we consider three factors: (1) the length of the 
utterance—a long utterance tends to contain more salient 
words/concepts than a short utterance; (2) the type of 
events--different events tend to contain different amount 
of salient words/concepts. For example, event 
ExplainAction tends to contain more salient 
words/concepts than event Accept; and (3) the discrepancy 
among salient words/concepts in their contribution to the 
similarity measure—the salient words/concepts that are 
more representative of the event meaning should 
contribute more significantly to the similarity measure 
than the others. Therefore, we propose a weighted 
counting of common feature for SS(u|Ej), the similarity 
between utterance u and event Ej: 
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where ci is the ith salient word/concept contained by both 
utterance u and event Ej, wi (Ej) is the corresponding 

weight of ci in event Ej, and )( jEulen ∪  is the number of 

salient words contained by either utterance u or event Ej. 

System Evaluation 

Cognitive State Classification 
We tested cognitive state classification using the manual 
transcriptions and automatic recognition of the utterances, 
and yielded 96.6% and 95.7% accuracies, respectively. 
Table 3 lists the featue vector accuracy ranking in terms of 
average F-score. 
 
Table 3: Feature vector accuracy ranking for cognitive 
state classification. Averaged F-score (sum of three one-
class F-score divided by 3), based on classification using 
the manual transcription. Classification based on 
automatic transcription results in the same relative ranking 
of feature vectors. 

Average F-score Feature Vector 
0.96 spectrum + prosody + lexicon + 

POS 
0.95 Spectrum + prosody 
0.94 spectrum 
0.76 prosody 
0.72 lexicon 
0.49 POS 

 
We also compared the robustness of different 

features to speech recognition errors, and present the 
results in Table 4. The table shows that the spectrum-
based classification and prosody-based classification were 
robust to speech recognition errors, much more than the 
lexicon-based classification. As for recognized speech, the 
part-of-speech-based classification could not converge 
during learning, so we did not obtain the classification 
result. When spectrum and prosody were combined, 
classification correctness for recognized speech and 
transcribed speech were almost identical. 
 
Table 4: Comparison of classification correctness between 
transcribed speech and recognized speech using different 
features 
 transcribed 

speech 
recognized 
speech 

recognized-    
transcribed 
(absolute) 

spectrum 94.6% 90.0% -4.6% 

prosody 85.4% 87.2% 1.8% 
lexicon 81.6% 70.9% -10.7% 
part-of-speech 73.6% - - 
spectrum + 
prosody 

96.0% 95.5% -0.5% 



Speech Denotation Analysis 
The ITS corpus has many question-answer pairs, in which 
the tutor initiates dialogue topics by asking questions or 
providing suggestions. In this case, presupposition of an 
utterance lies in the questions or suggestions of the tutor. 
Students sometimes initiate dialogue topics by making 
commands, asking questions or simply explaining on what 
they are doing. In this case, presuppositions for the 
students’ utterances do not exist. Three annotators 
independently identified the salient words that we have 
defined based on perception, text transcription, and 
dialogue context. The consistency among the annotators 
was (Kappa score) �  = 0.79. Then we used majority 
voting to resolve the annotation inconsistency among the 
three annotators. We used 90% of the corpus for training 
and the remaining 10% for test. Our experiment yielded 
an accuracy of 83.8% on the test set, which consisted of 
536 words. We also compared the features according to 
the accuracy of salient word extraction (see Table 5). 
 
Table 5: Feature accuracy ranking for salient word 
extraction 
Average F-score Feature Vector 

0.849 feature combination 
0.656 word dissimilarity 
0.593 duration 
0.577 part-of-speech 
0.546 spectral balance cepstral coeff. 
0.345 energy 
0.339 pitch 

 
We can see that pitch played unexpectedly low 

efficiency in salient word extraction. Because of the noisy 
recording environment, it was hard to discriminate voiced 
regions from unvoiced regions. The energy of unvoiced 
regions carried information irrelevant to pitch estimate. So 
the automatically extracted pitch showed too many pitch 
tracking errors to be an efficient feature. Spectral balance 
cepstral coefficients showed better performance, possibly 
because the band-pass filters (Ren, et al., 2004) eliminated 
the disturbance of low frequency noise that adversely 
affected the pitch and energy estimates. 

Tutoring Event Classification 
We applied See5 (Rulequest Research, 2004), a decision 
tree classifier, to combine the two distinct information 
sources, semantic similarity score and cognitive state, for 
tutoring event classification. The reason that we used 
decision tree was that it provided reliable performance 
when the amount of training data was small, and/or when 
the features were high dimensional. The tutoring event 
classification was independent on the dialogue state. 
Assume there are N event candidates (N = 30 here). Then 
the feature vector of a given utterance u is f(u) = {SS1, 
SS2, …, SSN, Cs}, where SSi is the score of the semantic 

similarity of u to Ei, and Cs is the cognitive state of u. The 
features used for information fusion are listed in Table 6.  
 
Table 6: List of the features for tutoring event 
classification 
Feature Size Description 
semantic similarity 
measure 

30 Continuous 

cognitive state 
 

1 Character: confidence, 
puzzlement, hesitation 

target 1 Discrete: 1, 2,…30 are 
labeled for E1, E2, …E30, 
respectively. 

 
We used the 10-fold cross-validation to evaluate our 

tutoring event classification system. Each time we 
randomly chose 397 (63%) samples for training and the 
remaining 233 (37%) samples for test. We first used the 
manually annotated salient words for the experiment, and 
the classification achieved 75.5% correctness. Then we 
used the automatically detected salient words for the 
experiment, and the classification accuracy reduced by 
15.4% relative. 
  The information structure of an utterance can be 
partitioned into the presupposed part(s) and the non-
presupposed part(s). But in our experiments, the literal 
meaning of an utterance was modeled by its salient words 
that excluded the presupposed information. Therefore, it 
seemed that the information representation of an utterance 
was not complete. However, our classification 
performance was satisfying. This was because: the 
inclusion of presupposition for information representation 
sometimes played positive function, sometimes played 
negative function, and sometimes played zero function for 
the identification of tutoring events. For example, if the 
tutor asked how much bigger a big gear was than a small 
gear, and the user answered “5 times”, then we knew that 
“5 times” was about the GearSize. If the tutor asked how 
much faster the small gear was turning than the big gear, 
and the user answered “5 times”, then we knew ‘5 times’ 
was about the SpinningSpeed. In this case, presupposition 
would help the tutoring event identification. However, for 
example, if the target tutoring event was AskToRepeat, the 
tutor could say various kinds of things before the user 
asked him to repeat. In this case, if we brought the tutor’s 
utterance (presupposition) into the utterance meaning 
representation, then it would bring complexity and 
difficulty for the target event identification. When the user 
initiated a dialogue topic by asking a question or making a 
command, then there was no presupposition, which meant 
that the function of presupposition was zero. If we wish to 
incorporate presupposition into the information 
representation of utterances’ meaning in the future, we 
might need to distinguish which tutoring events need the 
presupposed information for identification, and which do 
not. 



Conclusion 

We have addressed how to robustly understand 
spontaneous speech by combining speech connotation and 
denotation analyses. We used an ITS dialogue scenario, 
which was collected by the WoZ simulations and full of 
dysfluencies and loose grammars, as the target application 
platform. We interpreted utterances by classifying them 
into 30 tutoring events, which summarized the content 
meaning of the ITS utterances in a broad and shallow 
way. We used cognitive state classification for speech 
connotation analysis. We defined and then automatically 
extracted salient words that encode the literal meaning of 
spoken messages. We used speech and transcribed text 
for experiments. The experiments achieved 75.5% 
accuracy when the salient words were manually 
annotated. The accuracy reduced by 15.4% relative when 
the salient words were automatically detected. 
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