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Abstract—Bayesian classifiers rely on models of the a pri-
ort and class-conditional feature distributions; the classifier
is trained by optimizing these models to best represent fea-
tures observed in a training corpus according to certain
criterion. In many problems of interest, the true class-
conditional feature probability density function (PDF) is
not a member of the set of PDFs the classifier can repre-
sent. Previous research has shown that the effect of this
problem may be reduced either by improving the models,
or by transforming the features used in the classifier. This
paper addresses this model mismatch problem in statistical
identification, classification, and recognition systems. We
formulate the problem as the problem of minimizing the rel-
ative entropy, also known as the Kullback-Leibler distance,
between the true conditional probability density function
and the hypothesized probabilistic model. Based on this
formulation, we provide a computationally efficient solution
to the problem based on volume-preserving maps; existing
linear transform designs are shown to be special cases of
the proposed solution. Using this result, we propose the
symplectic maximum likelihood transform (SMLT), a non-
linear volume-preserving extension of the maximum likeli-
hood linear transform (MLLT). This approach has many ap-
plications in statistical modeling, classification, and recogni-
tion. We apply it to the maximum likelihood estimation of
the joint probability density function (PDF') of order statis-
tics and show a significant increase in the likelihood for
the same number of parameters. We provide also phoneme
recognition experiments that show recognition accuracy im-
provement compared to using the baseline Mel-Frequency
Cepstrum Coefficient (MFCC) features or using MLLT. We
present an iterative algorithm to jointly estimate the pa-
rameters of the symplectic map and the probabilistic model
for both applications.

I[. INTRODUCTION

Given a set of realizations of a random vector and a hy-
pothesized model of its probability density function, the
purpose of this work is to find a transform of this random
vector and a set of model parameters that jointly mini-
mize an empirical estimate of the relative entropy between
its true probability density function and the hypothesized
model. The first stage in many pattern recognition and
coding tasks is to generate a good set of features from the
observed data. The set should be compact and capture
all class discriminating information in the case of recog-
nition and all information needed to reconstruct the ob-
served data with sufficient quality in the case of coding.
This set of features is usually chosen based on the available
knowledge about the problem, or based on data-driven ap-
proaches to achieve compactness and discrimination goals.
In both cases, the features also should satisfy the assump-
tions imposed on them by the recognizer or the decoder.

Statistical pattern recognition and classification systems
are based on the assumption that the conditional probabil-

ity density functions of the features can be approximated.
Many probabilistic models in statistical recognition and
classification systems approximate the features’ joint PDF
by a Gaussian PDF or a mixture of Gaussian PDFs. Since
the measurements are not necessarily jointly normal, power
transforms are used in statistical analysis to get features
that satisfy the normality assumption better [1]. More-
over, in many high-dimensional applications, the values of
the correlation between different features are ignored. This
is achieved by assuming that the observations are condi-
tionally independent given some intermediate class label
(e.g., given the Gaussian component label in a diagonal-
covariance Gaussian mixture model [2], or given the class
label in a naive Bayes classifier [3]). The computational
efficiency requirements often motivate this assumption, al-
though it is known to be unjustified in many applications of
interest, e.g., in speech [4], image [5], and text [3] applica-
tions. This makes the problem of finding the features that
are best represented with these models equivalent to the
problem of finding the conditionally independent compo-
nents of the original features for each one of these interme-
diate class labels. Previous approaches to this problem for-
mulated it as a redundancy reduction problem that can be
solved by using a more relaxed model or by using a linear
transform of the data. In [6], we formulated the problem
as a non-linear independent component analysis (NICA)
problem. We showed that using the features generated
using NICA in speech recognition increased the phoneme
recognition accuracy compared to the baseline system and
compared to systems that used linear transforms like lin-
ear ICA [7], linear discriminant analysis (LDA) [8], and
maximum likelihood linear transform (MLLT) [9]. We
showed also that the NICA algorithm described in [6] can
be formulated as a generalization of the MLLT.

In this work, we will introduce a unified information-
theoretic approach to feature transformation that makes
no assumptions about the true probability density function
of the original data and can be applied for any probabilistic
model with arbitrary constraints. Both power transforms
and redundancy reduction approaches can be formulated
as special cases of what we call a model enforcement ap-
proach: the model enforcement approach estimates a non-
linear transform and the parameters of the probabilistic
model that jointly minimize the relative entropy between
the true joint feature PDF and its hypothesized model. In
the next section, we will give a very brief introduction to
statistical modeling for classification and recognition. We
describe the main previous approaches to feature trans-
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forms and their limitations in section ITI. An information-
theoretic formulation of the problem is described in sec-
tion IV. An iterative algorithm is described in section V to
jointly estimate the parameters of the transform of the fea-
tures and the parameters of the model. Then, experiments
based on an efficient implementation of this algorithm are
described in section VI. Finally, section VII provides dis-
cussion of the results and a summary of this work. In this
paper, a subscript is used as an index of a component of
a random vector, and a superscript is used as an index
of a realization of the random vector. Capital letters are
used to denote the random variables and the corresponding
small letters to denote their realizations. Both vectors and
matrices are in boldface to be distinguished from scalars.

II. PARAMETRIC APPROACH FOR STATISTICAL
MODELING

Bayes rule is the optimal classification rule if the un-
derlying distribution of the data is known. In practice,
we do not know the underlying distribution. There are
two main approaches to this problem: parametric and
non-parametric [8]. In non-parametric approaches like
kernel-based approaches the decision boundaries between
the classes are estimated directly instead of trying to esti-
mate the conditional density of the classes while paramet-
ric approaches estimate a parametric model of the condi-
tional PDFs. In this paper, we will limit our discussion to
the parametric approaches.

In parametric statistical modeling for classification and
recognition, a probabilistic model is chosen and its param-
eters are trained to optimize a certain criterion under the
assumption that the true PDF of the features can be ap-
proximated well by the model. Parameter optimization
takes place without, questioning the validity of this assump-
tion. Since the features are usually chosen based on prior
knowledge about the task using heuristic approaches, this
assumption is in most cases unjustified.

Information theory provides a measure by which we can
say how well a PDF is approximated by another PDF [10].
This measure is called the divergence, Kullback-Leibler dis-
tance, or the relative entropy and is defined by

R(P,P) = Ep [log <£>] ,

where P is the true PDF and P is the approximate PDF.
An important property of the relative entropy is that

(1)

R(P,P)>0
with equality if and only if
P=pP

Most parametric statistical classification systems use
maximum likelihood estimation (MLE) or Bayesian meth-
ods to estimate the parameters of the model. The popular-
ity of MLE is attributed to the existence of efficient algo-
rithms to implement it, like the expectation-maximization

(EM) algorithm, and to its consistency and asymptotic ef-
ficiency, if the true PDF belongs to the admissible set of
parameterized PDF models [11].

In the MLE method, the parameters, A*, are estimated
given a set of ii.d observations, {x! fil, by maximizing
the functional

N
Lemp = Z log P(x, \),

i=1

2)

with respect to the parameters .

Maximizing this empirical functional is equivalent to
minimizing an empirical estimate of the relative entropy
between the true PDF and the hypothesized PDF model

N
Remp(P, P) = —H(x)—%ZlogP(xi,/\), (3)

where H (x) is the differential entropy of the random vector
X.

Vapnik and Chervonenkis show that the necessary and
sufficient condition of the consistency of this maximization
problem is, [12],

Pr (sup |R(P, P) — Remp(P, P)| > €> -0 (4)

AEA
for N = oo and Ve > 0,

where {x‘}  are generated by any admissible PDF
P(x, ), VAo € A.

However, as we do not know the true PDF, we can not
guarantee small approximation error. A small approxima-
tion error can be achieved by using a complex structure
of the hypothesized models that can approximate a large
set of PDFs. On the other hand, this increases the com-
putational and conceptual complexity of the system, and
increases the required amount of training data to get a
good estimate of the model parameters.

An important property of any classification or recogni-
tion model that is related to consistency is its generaliza-
tion ability. The generalization ability is a monotonically
increasing function of the ratio of the number of available
training vectors and the VC dimension of the family of the
hypothesized PDFs [12]. This means that the require-
ments of generalization ability conflict with the require-
ments of decreasing the approximation error.

One way of controlling the number of parameters is by
using a relatively simple probabilistic model, and a trans-
form of the observation vector to a new feature vector
whose PDF is better modeled by the hypothesized PDF
based on certain criterion. Many previous approaches to
feature transformation show improvement in classification
and recognition accuracy compared to using more complex
probabilistic models for the same number of parameters
[9], [5], and [6]. Most of these methods, as will be dis-
cussed in next section, are linear transformations that use a



number of parameters equal to the square of the dimension
of the feature vector. Our approach provides a generaliza-
tion to non-linear transformations that is more flexible in
selecting the number of the parameters of the transform,
as it is linear in the dimension of the input features.

III. TRANSFORMATIONS OF MULTIVARIATE DATA

Many important results in statistical analysis and pat-
tern recognition follow from the assumption that the pop-
ulation being sampled or investigated is either normally
distributed or conditionally independent given the class
label. For this reason, many methods have been proposed
that transform the measurements to better satisfy the as-
sumptions of normality and/or conditional independence.
In this section, we will give very brief examples of previous
approaches to transform multivariate data such that these
assumptions are better satisfied.

A. Transformations To Approximate Normality

The assumption of normality that most statistical anal-
ysis approaches are based on is seriously violated in many
interesting problems. A frequently discussed solution in
the statistical literature is to transform the original mea-
surements to features that better satisfy the normality as-
sumption. The transformation may be based on theoretical
considerations or use a data-driven approach. Univariate
examples of the former type are the logistic transformation
for binary data [13], and the variance stabilizing transfor-
mations for the binomial, the Poisson, and the correlation
coefficient [14].

There are many examples of data-driven transforma-
tions. Tukey introduced a family of power transforma-
tions such that the transformed values are a monotonic
function of the observations over some admissible range
for univariate analysis [15]. This family was modified
in [16], where maximum likelihood and Bayesian meth-
ods were used to estimate the transformation parameter.
These power transforms were extended to the multivariate
case by using a number of scalar transforms equal to the di-
mension of the observation vector in [1]. Conceptual and
computational simplicity were the main reasons to limit
the suggested transforms to a family of power transforms.

B. Transformations For Redundancy Reduction

As described in section I, one way of controlling the
number of parameters of the probabilistic model in clas-
sification and recognition systems is by assuming that the
features are decorrelated or independent. This degrades
the performance of the system, if the features used in the
statistical recognition or classification system do not sat-
isfy this assumption. Recent approaches to address this
problem can be classified into two major categories. The
first category tries to decrease the number of parameters
required for a full account of the features’ interdependence
by tying the parameters of the class-conditional probabilis-
tic models. In other words, this category tries to reduce the
redundancy in the model parameters. In the second cat-
egory, the original feature space is transformed to a new

feature space that better satisfies the assumption of con-
ditional independence or decorrelation. In other words,
this category tries to decrease the redundancy in the fea-
tures themselves. Methods in this category typically use
linear transforms, and therefore typically require a num-
ber of trainable parameters equal to the dimension of the
input feature vector times the dimension of the output fea-
ture vector. In the following, we will describe examples of
redundancy reduction based on feature transformation.

B.1 Principal Component Analysis

Principal component analysis [8], and the closely re-
lated Karhunen-Loeve transform are classic techniques in
statistical data analysis, feature extraction, and data com-
pression. Given a random vector x and a number of ob-
servations from this random vector, no explicit assump-
tions on the probability density of the vectors are made
in PCA, as long as the first- and second-order statistics
can be estimated from the observed data. Also, no gen-
erative model is assumed for the vector x, but there are
extensions to PCA like probabilistic principal component
analysis (PPCA) [17], and like the sensible PCA (SPCA)
approach in [18] that associate a generative model with
PCA. The PCA transform is constructed from the eigen-
vectors of the sample covariance matrix with maximum
corresponding eigenvalues. This transform is the unique
unitary transform of a given dimension such that the ele-
ments of the output vector are uncorrelated and its vari-
ance is maximized.

Since there are many sources of variability in most real-
life signals and some of them are irrelevant to the classifi-
cation or recognition task, selecting the direction of maxi-
mum variance for projection does not always minimize the
recognition error. Therefore, PCA is sometimes used in
these tasks to calculate the principal components of the
Fisher covariance matrix of the classes

Swy = W'B, (5)
where W is the within-class scatter matrix, and B is the
between-class scatter matrix [8]. This approach is called
linear discriminant analysis (LDA).

Campbell [19] has shown that linear discriminant anal-
ysis is related to the maximum likelihood estimation of
parameters for a Gaussian model, with a priori assump-
tions on the structure of the model. Hastie and Tibshi-
rani [20] further generalized this result by assuming that
class distributions are a mixture of Gaussians. Kumar
[21] generalized LDA to the case of classes with different
covariance matrices and referred to this generalization as
heteroscedastic discriminant analysis (HDA). HDA can be
formulated as a maximum likelihood estimation problem
for normal populations with common covariance matrix in
the rejected subspace.

B.2 Independent Component Analysis

ICA defines a generative model for the observed multi-
variate data [22], [7]. These data are typically given as a
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large database of samples. In the model, the data variables
are assumed to be linear mixtures of some unknown latent
variables, and the mixing system is also unknown. The
latent variables are assumed non Gaussian and mutually
independent, and they are called the independent compo-
nents of the observed data. These independent compo-
nents, also called sources or factors, can be found by ICA.

ICA can be seen as an extension to principal component
analysis and factor analysis. The goal of ICA is to estimate
the independent sources and the mixing coefficients given
only observations that are a linear mixture of the latent
independent source signals. In contrast to PCA, ICA not
only decorrelates the sources but also reduces higher-order
statistical dependencies, attempting to make the compo-
nents as independent as possible.

There are many approaches to solving the ICA prob-
lem, including information maximization, maximum like-
lihood estimation, negentropy maximization, higher-order
moments and cumulants approximations of differential en-
tropy, and nonlinear PCA. In [23], it is shown that all
these different approaches lead to the same iterative learn-
ing algorithm.

The maximum likelihood linear transform (MLLT) in-
troduced in [9] can be formulated as a maximum likeli-
hood ICA for data generated by each Gaussian component
of a Gaussian mixture model [6]. MLLT estimates the
parameters of a linear transform in order to maximize the
likelihood of the training data given a diagonal-covariance
Gaussian mixture model; the transformed features are bet-
ter represented by the model than the original features.
This is motivated by the fact that the diagonal covariance
models impose a constraint on the likelihood of the features
which results in underestimating its value.

As stated before, ICA algorithms assume that the com-
ponents are mixed linearly to generate the observation
data. However, in many interesting applications, this as-
sumption is unjustified or unacceptable. In [6], an exten-
sion of the ICA algorithms to nonlinearly mixed sources
was used to reduce the redundancy of the features used in
speech recognition.

C. Limitations of Previous Approaches

Transformations to achieve normality were constrained
to using a restricted family of power transforms and to
a Gaussian hypothesized model. These transforms were
scalar transforms, i.e. each transformed feature is obtained
from a single input measurement.

An important limitation of existing feature-based redun-
dancy reduction approaches is the assumption that a linear
transform of the features is enough to satisfy the model.
For example, ICA algorithms assume that the factors are
mixed linearly to generate the observation vectors. In
many interesting applications, this assumption is unjusti-
fied or unacceptable. An example is the speech recognition
problem, as all acoustic features used in speech recognition
can not be modeled as a linear mixture of independent
sources of variations in the speech signal. In image and
face recognition also, there are deformations like bending

which result in correlations that can not be compensated
for by a linear transform. In case of Gaussian or mixture
of Gaussian hypothesized PDF, this sufficiency of linear
transformation assumption is equivalent to assuming that
the true conditional joint PDFs of the features are Gaus-
sian or mixture of Gaussian PDFs respectively. This is
due to the fact that any linear transformation of a Gaus-
sian random vector results in a Gaussian random vector.
This limitation was alleviated in the non-linear indepen-
dent component analysis approach proposed in [6]. How-
ever, the statistical independence constraint is only one
of many possible constraints that may be imposed on the
probabilistic models used in classification and recognition
systems.

IV. A UNIFIED INFORMATION-THEORETIC APPROACH
TO MODEL ENFORCEMENT

The goal of this section is to generalize feature transfor-
mation in two ways. First, we will provide a feature trans-
formation framework that makes no assumptions about
the probabilistic model and the constraints imposed on
it. This provides us with the flexibility needed to address
problems in which the model is not necessarily Gaussian
and does not assume the features are uncorrelated or in-
dependent, but assumes a certain parametric form of the
features’ conditional PDFs. Second,we will provide a non-
linear transform, as opposed to previous linear transforms,
that is based on this framework. This non-linear trans-
form is a vector-based transform, as opposed to previous
scalar power transforms. The number of parameters of
this transform is linear in the dimension of the input fea-
ture vector, while it is quadratic for linear transforms. We
will show also how all previous transforms to normality
and redundancy reduction approaches discussed in section
III are special cases of the information-theoretic model en-
forcement approach proposed here.

A. Problem Formulation

Motivated by the discussion of the previous sections, we
will choose any hypothesized parametric family of distri-
butions to be used in our probabilistic model, and search
for a map of the features that improves the validity of our
model. To do that, we will need the following theorem.

Theorem 1: Let y = f(x) be an arbitrary one-to-one
map of the random vector x in " to y in ", and let
PA(Y) be a hypothesized parametric family of density
functions. The map f*(.) and the set of parameters A*
minimize the relative entropy between the hypothesized
and the true PDF's of y if and only if they also maximize
the objective function

V = Epgy) log(|det(Jf)|)+10gPA(Y) ) (6)

where J; is the Jacobian matrix of the map f(.).

Proof:

We will rewrite the expression for the relative entropy
after an arbitrary transformation, y = f(x), of the input



random vector x in 1", as

R(P(y), P(y)) = —H(P(y)) — Bp(y) [log (P(y))] {7)

where H(P(y)) is the differential entropy of the random
vector y based on its true PDF P(y).

The relation between the output differential entropy and
the input differential entropy is in general [24],

H(P(y)) <

H(P(x)) +/ P(x)log (|det (I 5)[) dx,(8)

n

where P(x) is the probability density function of the ran-
dom vector x, for an arbitrary transformation, y = f(x),
of the random vector x in R”, with equality if f(x) is in-
vertible.

Therefore the relative entropy can be written as

R(P(y), P(y)) = —H(P(x)) — Ep(x) [log (|det (J)])]
—Ep(y) [log P(Y)] , 9)

for an invertible map y = f(x).
The expectation of a function g(x) for an arbitrary one-
to-one map y = f(x) can be written as [24],

Ep [9x)] = Epw) [9(F7 )],

where f~!(.) is the inverse map.
Therefore

(10)

R(P(y), P(y)) = ~H(P(x))
~Ep(y) [log (Idet (37)]) +10g P(y)] .
(11)

Equation 11 proves the theorem. |

Theorem 1 states that minimizing the relative entropy
is equivalent to maximizing the sum of the expected log
likelihood and a cost function; the cost function is deter-
mined by the determinant of the Jacobian matrix of the
transform. This cost function guarantees that maximiz-
ing the likelihood of the transformed features will not be
at the expense of their information content measured by
their differential entropy.

B. A Mazimum Likelihood Approach to Model Enforce-
ment

For a nonlinear feature transformation, the Jacobian ma-
trix of the transformation is a function of the values of the
feature vectors. This makes the maximization of the ob-
jective function for a high-dimensional input feature vec-
tor computationally expensive. A significant reduction in
the computational complexity is achieved by an important
special case. This special case that reduces the problem to
maximum likelihood estimation (MLE) of the model and
map parameters is given in the following lemma, but first
we need to define volume-preserving maps in R”, where n
is an arbitrary positive integer.

Definition: A C* map f : Sx — Sy where Sy C R"
and Sy C R" is said to be volume-preserving if and only if
|det ()| =1 Vx € S«.

Lemma: Let y = f(x) be an arbitrary one-to-one C'*°
volume-preserving map of the random vector x in " to y
in £", and let PA(y) be a hypothesized parametric family
of density functions. The map f*(.) and the set of pa-
rameters A* jointly minimize the relative entropy between
the hypothesized and the true PDFs of y if and only if
they also maximize the expected log likelihood based on
the hypothesized PDF.

Using the definition of the volume-preserving maps, the
proof of the lemma is straightforward. The Lemma proves
that the maximum likelihood criterion used in MLLT is
the appropriate criterion for any volume-preserving trans-
form. By reducing the problem to MLE problem, efficient
algorithms based on the incremental EM algorithm can be
designed [25].

C. Generality of Model Enforcement Approach

Theorem 1 generalizes previous approaches in two ways.
First, transforms can be designed to satisfy arbitrary con-
straints on the hypothesized PDF, not necessarily those
that impose an independence or decorrelation constraint
on the features. Second, it can also be applied to any pa-
rameterized probabilistic model not necessarily Gaussian.
To show the generality of theorem 1 and its wide range of
applications, we relate it with previous methods.

Transformations to normality described in section II are
a special case of theorem 1 by constraining the PDF model
to be Gaussian and the transform to be a power transform.

PCA may be viewed as a special case of theorem 1 un-
der two equivalent constraints. First, if the transform is
constrained to be linear and the model PDF is constrained
to be a diagonal-covariance Gaussian, then theorem 1 re-
duces to PCA. Equivalently, if the true feature PDF is as-
sumed to be Gaussian, and the model PDF is constrained
to be a diagonal-covariance Gaussian, theorem 1 reduces
to PCA. Probabilistic PCA (PPCA) is a generalization of
PCA that can be shown as an application of theorem 1
when the hypothesized model of the joint PDF is not nec-
essarily Gaussian.

ICA also can be shown as a special case of theorem
1 when the hypothesized model assumes statistical inde-
pendence of the transformed features and the transform is
constrained to be linear. Nonlinear ICA removes the con-
straint that the transform must be linear. Factor analysis
is also a special case of theorem 1 by assuming that the hy-
pothesized joint PDF is Gaussian with special covariance
structure.

MLLT is a special case of theorem 1 by using a linear
volume-preserving map of the features and assuming the
hypothesized joint PDF is Gaussian or a mixture of Gaus-
sians. As we highlighted before, these two assumptions
of linearity and Gaussianity together are equivalent to the
assumption that the original features are Gaussian.

It should be noted that all linear maps designed to im-
prove the satisfaction of the features of a given model are
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special cases of the lemma, as any linear map is equivalent
to a linear volume-preserving map multiplied by a scalar.

V. IMPLEMENTATION OF THE MAXIMUM LIKELIHOOD
APPROACH

In the previous section, we showed that by using a
volume-preserving map, the model enforcement problem is
reduced to maximizing the likelihood of the output com-
ponents. This section therefore develops a maximum like-
lihood volume-preserving nonlinear transform algorithm.
The resulting algorithm may be considered a nonlinear
generalization of MLLT with a more flexible parameter
count than MLLT; experiments in section VI show that
the algorithm outperforms MLLT with fewer trainable pa-
rameters. In this section, we use a volume-preserving map
to generate the new set of features. The maximum like-
lihood approach using volume-preserving maps is a good
compromise between the two extremes of previous linear
approaches with their simplicity and computational effi-
ciency but inadequacy in many applications, and the non-
linear approaches with their generality but computational
complexity associated with calculating the determinant of
the Jacobian matrix.

A. Symplectic Maps

Symplectic maps are volume-preserving maps that can
be represented by scalar functions [26]. This very inter-
esting result allows us to jointly optimize the parameters
of the symplectic map and the model parameters using the
EM algorithm or one of its incremental forms [25].

nLet X = (Xl)XQ)) and y = (y1)y2)) with X1,X2,Y1,¥2 €
R2, then any reflecting symplectic map can be represented
by

OV (x2)

yr = xa1 9%y (12)
8T(Y1)
= _— 1
Y2 X2 6y1 ) ( 3)

where V() and T'(-) are two arbitrary scalar functions
[27]. We use two multi-layer feed-forward neural networks
to get a good approximation of these scalar functions [28].

V(u,A,C)

E:CJ (aju

(14)

T(u,B,D)

ZdSbu

where S(.) is a nonlinear function like sigmoid or hyper-
bolic tangent, a; is the jth row of the H x § matrix A,
and c; is the jth element of the H x 1 vector C, b; is the
jth row of the H x § matrix B, and d; is the jth element
of the H x 1 vector D. The parameters of these two neu-
ral networks and the parameters of the model are jointly

optimized to maximize the likelihood of the training data.

(15)
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B. Joint Optimization of The Map and Model Parameters

We will explain in this section how the parameters of
the volume-preserving map and the probabilistic model
can be jointly optimized to maximize the likelihood of
the estimated features. We will assume that the system
is an HMM-based recognizer [29]. However, this approach
can be applied to any statistical classification, detection,
or recognition system for which a set of hidden variables
can be defined. We will assume also that the scalar func-
tions in the symplectic map are represented by three-layer
feed-forward neural networks (NN) with the nonlinearity
in the NNs represented by hyperbolic tangent functions,
and therefore,

H

y1 = X1 — chajT[l — 5%(ajx2)], (16)
"

Y2 = Xz — ZdjbjT[l — §%(bjy1)]- (17)

The derivation for any other non-linear function is a
straightforward replication of the derivation provided here.

Define ®* = (A¥, W*) to be the set of the recognizer
parameters, A, and the symplectic parameters, W¥, at
iteration k of the algorithm. Using the EM algorithm, the
auxiliary function [30] to be maximized, with respect to
PFH1 s

Q(®", M) = Epy.anllog Py, (@5 )y, @],
(18)

where ( € £ is the state sequence corresponding to the
sequence of observations x € R"*7T that are transformed
to the sequence y € R and T is the sequence length in
frames. In this case, the hidden variables for the EM algo-
rithm are the HMM states, (! for 1 < ¢ < T, and the com-
plete data is the set of features and HMM states,(y?, ¢?),
at each instance ¢. The transformed features y* are observ-
able variables as they are obtained from the observed fea-
ture vector x’ by an invertible transformation y* = f(x?).
The auxiliary function can be written as

: Ply,(|®*) 4 ko1
Q(@*, @) = Y == log P(y, (|®"").(19)
> Py
Given a particular state sequence (, f’(y,( |®X) can be
written as
T
P(y,(|®") = m H (¢, M) Pyt @%),(20)

where 7o is the probability of starting the sequence in
state (0, P(Ct|¢t!, ®*) is the state transition probability
from (! to (! given the current parameters ®* , and



P(yt|¢t, ®*%) is the probability of the observation vector
y! € R given the state ¢* and the current parameters ®.
Then, the auxiliary function becomes

cee P(y|®*)

T
<log meo + Y log P(CtICt‘l,é’““))

t=1

Q@ @) =

Py, CI®%) . e ki
+§7ﬁ(| )10gP(y|C,'I>+).

(21)

The updating equations for the HMM parameters based
on this formulation are the same as mentioned in [2], and
therefore will not be derived here. To calculate the updat-
ing equations of the symplectic parameters, we note that

A k T
Z PEY>C|‘£ ) ZIOgP(ytK-t’ §k+l)
2 p(yar) &
L T ra t k R
:ZZPy;C l|(} )10 P(yth:l,{)kJrl), (22)
=1 t=1 |¢k)

where L is the total number of states.
Therefore, the derivative of the auxiliary function with
respect to y; for j =1,2,--- ,n is given by

OQ(Pk, Pr+1) ZL:XT: P(y, ¢t =1|®")
0y, =1 t=1 Y|‘I>k)
dlog P(y'|¢t = 1, ®F+)
(23
8?/] ( )

If a mixture of densities is used to model each state, then
the derivative of the auxiliary function becomes

L K;

ZZZ y,C —lpgit—m|‘§)

=1 m=1 t=1 Y|'I’k)
610gP(y |Ct = l)ﬂ(‘t = m)¢k+1)
Jy;

8Q(<I>’“ )

(24)

where p¢e; is the mixture component at time ¢ in the mix-
ture of the state (¢, and K; is the number of densities in
each mixture.

These equations are written for one input sequence of
observations, and a summation over all training patterns,
i.e. sequences of observations, is excluded to simplify the
equations. Since the update equations for the symplectic
parameters do not need to explicitly mention the structure
of the recognizer, we will merge the summation over all
states and densities to a summation over densities. These
reductions are only to improve the tractability of the fol-
lowing equations and have no effect on the derivation. Af-
ter modifying the notation,

aQ(§k, (I>k+1)
dy;

P(y, m|®) dlog P(y*|m, ®+1)
P(y|®*) dy;

(25)

where K is the total number of Gaussian PDFs in all HMM
states.

We will assume that the recognizer models the condi-
tional PDF of the observation as a mixture of diagonal-
covariance Gaussians and therefore

8Q(<I>k, {)k—i-l) B
Oy,

(v|®F) oy

)

ae

(26)

where fi,,5, and o7, ; are the mean and the variance of the
jth element of the mth PDF respectively.

In the following, we will derive the updating equation
for the four sets of parameters used in the symplectic map,
namely A, B, C, and D. Let the non-linear function used
in both feed-forward neural networks be the hyperbolic
tangent as stated before.

Starting with A and B, to calculate the update equation
for a symplectic parameter a4, and by, for ¢ =1,2,--- , H,
and for r = 1,2,--- , 3, we have to calculate the partial
derivative of the auxiliary function with respect to these
parameters. These partial derivatives are related to the
partial derivatives of the auxiliary function with respect to
the features by the following relation

aQ(§k, (I>k+1) 3y1j
Oy

aQ(§k’ §k+1)
Oagr

1Mo

Oagr

<.
Il

+
M

OQ(®*, ®*1) dys;

, (27
8y2j 8aqr ( )
and
6Q(<I>k, §k+1) _ z%: aQ(§k’ §k+1) 6y2j (28)
8bqr = 6y2j 6bqr ’
where
2T, Ele (chahjS(ahX2)[1 — S?‘(ahxz)])
Oyri forr #j
Fa = | 2o Tiy (e Sanseo)[1 - $2(anso)])
o —cq[1 = S (agx2)]
forr=7j
(29)
Oy2j B i Oy1x Oyaj
Oay — Oagr Oy1i’ (30)
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Yo =l
822 = Z dnbrjbuiS(bry1)[l — S (bry1)]) ,(31)
and
2y1- Yo, (enbnjS(bry1)[1 — S%(byx2)])
Oyai forr #j
5 =\ 201 Xy (enbniS(bay1)[1 — S?(buxs)))
o —dy[1 = S*(bgy1)]
forr=7j

(32)

For C and D, the derivation will follow the same proce-
dure, but the resulting equations are much simpler. The
partial derivative of the auxiliary function with respect to
the symplectic parameter ¢, and d, for¢ =1,2,--- , H, are
related to the partial derivatives of the auxiliary function
with respect to the features by the following relation

8Q(¢k, q)k+1) 8@(@1‘:, @k—i_l) 8y1j

Do

Ocy = 0y1j Ocq
3 8Q(§k,¢k+1) 82/2]'
+ , (33
]Z::l 6y2j 8cq ( )
and
aQ((§k Fht) 2%: QB*, B*1) Ay, 5
= aij 6dq ’
where
Oy
pes = il = 5%(agxa)] (35)
82/2]' L Oy 8y2j
= , 36
Ocy kz::l Ocy O0Y1k (36)
and
Q2 yglt— 5 (byy)] (57)
ad, = Ogj q¥Y1)l-

To update the symplectic parameters in each iteration,
the symplectic parameters that maximize the likelihood
can be estimated at each iteration using gradient based
optimization algorithms. Equations 27- 37 can be used
for updating the symplectic parameters iteratively until
the value of the likelihood is maximized.

The steps of the generalized EM iterative algorithm to
update the symplectic parameters and the HMM parame-
ters are

1. Initialize the symplectic parameters and the HMM

parameters.
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2. Calculate the transformed feature vectors y using the
current symplectic maps and the input feature vectors
as in Equations 16 and 17.

3. Using the current value of the parameters ®*, esti-
mate the auxiliary function.

4. Using the current HMM parameters, estimate the
symplectic parameters that maximize the auxiliary
function by using a gradient-based optimization al-
gorithm.

5. Update the transformed feature vectors y using the
current symplectic maps and the input feature vectors
as in Equations 16 and 17.

6. Estimate the HMM parameters that maximize the
auxiliary function using the current symplectic param-
eters.

7. Tterate (starting from 3) until convergence.

In our experiments, we used the conjugate gradient al-
gorithm to update the symplectic parameters at each it-
eration. The computational complexity of updating the
symplectic parameters using the conjugate gradient algo-
rithm is O(2(n+1)H N +nH?N) which compares favorably
to O(n?N) for linear approaches for large n, where n is the
dimension of the feature vector, H is the number of hid-
den units in the neural network, and NV is the number of
feature vectors in the training data.

VI. EXPERIMENTS AND RESULTS

We will apply the symplectic maximum likelihood trans-
form (SMLT) described in the previous section to two dif-
ferent problems of high-dimensional probabilistic model es-
timation. The first is the estimation of the joint PDF of an
example of order statistics, and the second is the estima-
tion of the joint PDF of the Mel-frequency cepstrum coeffi-
cients of a speech utterance using Gaussian mixture hidden
Markov model as the hypothesized probabilistic model. In
the first set of experiments, we compare the likelihood ob-
tained at each iteration to the likelihood obtained with-
out using any transformation of the measurements, and
the likelihood obtained by using maximum likelihood lin-
ear transformation (MLLT) of the measurements with all
methods having approximately the same number of total
parameters. In the second set of experiments, the phoneme
recognition accuracies obtained by the three methods are
compared. In both set of experiments, the conjugate gra-
dient algorithm was used to update the symplectic param-
eters in each iteration. The number of hidden nodes of the
neural network used in constructing the symplectic map is
three in all experiments. Therefore, the total number of
symplectic parameters in each experiment is 3n + 6,where
n is the dimension of the feature vector. In all experiments,
initializing the symplectic parameters by very small values
compared to the dynamic range of the original features
gave the best results that are reported here.

A. Order Statistics

Order statistics are important features that are usually
used in classification and coding. Examples of order statis-
tics are the five largest wavelet coefficients, or the median
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of a given set of values. The joint distribution of a collec-
tion of order statistics obtained from a set of i.i.d. random
variables can be calculated exactly given the probability
density function of these random variables [31]. Given
N realizations of the random vector x of length n with
{z;}, are iid random variables, let y; = G(x;). Define
Yy = [y1---yn] . Let z = [z ---2p] be obtained from y
by sorting into ascending order and selecting the first M
values. Let Cy,(y;), and Py, (y;) be the cumulative dis-
tribution function (CDF) and PDF of y; Vi, respectively.
Then, the joint PDF of Z is given by

Pz( ) M IMIP (2i)
Z\%1,%22, " ,ZM) = Y; (%
(N—M)!i:1

[1—Cy, (zan)] N7 (38)

In this experiment, we generated a set of N iid real-
izations of Gaussian random vectors {x7}N, of length
n = 100 with zero mean and identity covariance matrix,
and transformed each component to y] = |z]|. After sort-
ing the one hundred transformed components of each ran-
dom vector in ascending order, we took the first thirty
components, i.e. M = 30. These 30 components of each
realization were used to estimate the symplectic parame-
ters and the parameters of a Gaussian mixture (GM) prob-
abilistic model of the joint probability density function of
these 30 components. The parameters are estimated to
maximize the likelihood of the training data using the al-
gorithm described in the previous section. The log likeli-
hood of the training data using (SMLT+GM) is compared
to the log likelihood achieved using the (MLLT+GM) ap-
proach as described in [9] and discussed briefly in section
II1, and to the log likelihood achieved using the EM algo-
rithm to train a Gaussian mixture model using the same
data without transformation (GM). The hidden variables
in this experiment are the identity of the Gaussian PDF
in the mixture. The Gaussian mixture model in the three
methods is initialized using the Linde-Buzo-Gray (LBG)
algorithm [32]. The MLLT transform was initialized with
a matrix very close to the identity matrix by using very
small off-diagonal values. The symplectic parameters are
initialized by very small values compared to the dynamic
range of the original features. We considered four other
random initializations for the MLLT and the SMLT trans-
forms and the resulting log likelihood were the same or less
than those reported here for both methods. The number
of training vectors N was chosen to be equal to 2 x 107.
The comparison of the three methods is shown in figure
1. The figure shows significant increase in the log likeli-
hood by using the symplectic map. Since an increase in
the likelihood can be achieved by increasing the number
of parameters of the model, e.g. by increasing the number
of Gaussian densities in the mixture, a comparison of the
number of parameters used in each method is provided in
table I. The table shows that the increase in the likelihood
using SMLT is achieved using fewer parameters than both
GM and MLLT. To compensate for the additional number

of transformation parameters needed by SMLT and MLLT,
we used a different number of Gaussian PDFs in the mix-
ture for each method. The number of Gaussian PDFs used
by each method is provided in table II

TABLE I
ToTAL NUMBER OF PARAMETERS FOR EACH METHOD
Method Number of Parameters
GM 1952
MLLT+GM 1937
SMLT+GM 1926

TABLE II
NUMBER OF GAUSSIAN PDFS IN THE MIXTURE FOrR EACH METHOD

Method Number of PDF's
GM 32
GM+MLLT 17
GM+SMLT 30

Comparison of Log Likelihood For Order Statistics
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Fig. 1. Comparison of Log Likelihoods for Order Statistics

B. Modeling of Dynamic Patterns Using HMM

To test the performance of our approach on modeling
patterns of variable length, we take the speech signal as an
example. Most speech recognition systems use a Gaussian
mixture HMM-based recognizer and use the Mel-frequency
cepstrum coefficients (MFCC) and their deltas as the in-
put acoustic features to the recognizer [33]. In our experi-
ments, the 61 phonemes defined in the TIMIT database are
mapped to 48 phoneme labels for each frame of speech as
described in [34]. A three-state left-to-right model of each
phoneme is trained using the EM algorithm. The number
of mixtures per state ranged from four to thirteen based on
the number of frames of training data assigned to the state.
The SMLT approach is applied to an input feature vector
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that consists of twelve MFCC coefficients, energy, and their
deltas. These acoustic features are calculated for the whole
training subset of the TIMIT database, and the parame-
ters of the symplectic map and the HMM models are jointly
optimized to maximize the likelihood as described in the
previous section. The SMLT and MLLT transforms are
initialized the same way as in the previous set of exper-
iments. We considered four other random initializations
for the MLLT and the SMLT transforms and the resulting
phoneme recognition accuracies were the same or less than
those reported here for both methods. The parameters
of the triphone models are tied together using the same
approach as in [35].

TABLE III
PHONEME RECOGNITION ACCURACY

Recognizer Recog. Accuracy | No. of Parameters
MFCC+GM 73.7% 25407324
MLLT+GM 74.6% 25407311
SMLT+GM 75.6% 25407302

The phoneme recognition results and the total number
of parameters for the three methods are provided in table
III. Tt shows an improvement in the recognition accuracy
using the SMLT approach as compared to MLLT and the
baseline system. Previous phoneme recognition accuracy
results on the TIMIT database, [6], verify that the im-
provement in recognition accuracy achieved here by using
SMLT is significant.

VII. DISCUSSION

This work proposes a model enforcement approach to
feature transform design for statistical classification, iden-
tification, and recognition systems. This approach calcu-
lates a one-to-one map of the features to minimize the rel-
ative entropy of the true PDF of the features and the hy-
pothesized PDF. The model enforcement criterion is shown
to be a generalization of a wide variety of existing trans-
form design criteria including redundancy reduction trans-
forms, and transformation to normality techniques. A use-
ful special case of the model enforcement approach is that
of the symplectic maximum likelihood transform (SMLT),
in which a volume-preserving map is optimized jointly with
the model parameters to minimize the relative entropy. A
computationally efficient EM-based iterative algorithm for
SMLT optimization is described. This iterative algorithm
was applied to two important statistical modeling prob-
lems: estimation of the joint PDF of order statistics using
a Gaussian mixture, and modeling the MFCC coefficients
of the speech signal using an HMM. In the first applica-
tion, an improvement in the log likelihood is achieved using
the SMLT approach compared to MLLT and compared to
using the original features. This improvement is achieved
with a total number of parameters less than other methods
in both cases. Phoneme recognition experiments also show
significant improvement in recognition accuracy achieved
by SMLT compared to the other two methods.

The model enforcement approach is intended to provide
a general framework for many interesting feature trans-
formations to reduce inaccuracy of statistical models. The
paper provides two example applications; several other spe-
cial cases can be defined by the choice of the parametric
form of the map, constraints on the determinant of its Jaco-
bian matrix, and the form of the parameterized likelihood
function. The choice of a certain solution is related to the
complexity of the problem and the nature of the features
used in the system. The main advantage of this general
formulation is the avoidance of strict assumptions about
the features or the model as in previous approaches.
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