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Abstract
Our goal is to study the statistical methods for source
separation based on temporal and frequency specific fea-
tures by usingparticle filtering. Particle filtering is an
advanced state-space Bayesian estimation technique that
supports non-Gaussian and nonlinear models along with
time-varying noise, allowing for a more accurate model
of the underlying system dynamics. We present a system
that combines standard speech processing techniques in a
novel method to separate two noisy speech sources. The
system models the pitch and amplitude over time sepa-
rately, and adopts particle filtering to reduce complex-
ity by generating a discrete distribution that approximates
well the desired continuous distribution. Preliminary re-
sults that demonstrate the separation of two noisy sources
using this system are presented.

1. Introduction

One of the primary questions in source separation has
been how to handle the processing in noisy environments.
Stochastic analyses [1, 2] often involve a Markov source
chain and an associated observation sequence together
with a noise process. The goal is to determine the op-
timal filter based on the observations, the Markov tran-
sition probabilities, and the distribution models (for the
noise especially).

The work of Meddis and Hewitt [3] for the first time
demonstrated a quantitative model of methods by which
the human ability to identify two simultaneous vowels
may improve if the fundamental frequencies of the vow-
els are different. The first part of their system simulated
the human auditory periphery via a bank of bandpass fil-
ters and inner hair-cell simulators. Pitch and timbre infor-
mation was extracted over all the channels and a pooled
ACF was used to estimate a pitch. The individual ACFs
were then grouped accordingly and used to determine one
of the two vowels. The second vowel was assumed to
be represented by the remaining channels. Essentially,
the authors used the pitch and timbre information from
the mixed signal with a template matching procedure to
generate information about the two source vowels. We
have incorporated this idea of tracking the periodicity in-
formation from the observation signal over both source

chain reconstructions. However, we extend the idea to
full speech source reconstructions instead of just vowel
identifications.

In addition to the pitch information, we have also in-
corporated the magnitude spectra into the system, similar
to the work of Nixet. al. [1]. The authors in this work
proposed an algorithm that performed a source separa-
tion based on magnitude spectra and direction, tracked by
a particle filtering procedure on a frame-by-frame basis.
However, according to the authors, the two-voice experi-
ments led to spectral (magnitude) estimates that differed
significantly from the true spectra of the sources. In our
work, we do not incorporate any directional information.

Finally, another important work in the literature on
source separation is the re-filtering approach proposed by
Roweis [2]. The approach is based on the idea of selec-
tively re-weighting across sub-bands via a set of varying
masking signals. Different sources are estimated from
mixtures by changing the masking signals. Roweis infers
the masking signals using a factorial HMM structure.

We note two important concepts: first, for two clean
speech signals that are mixed additively in time, the log
spectrogram of the mixture is represented very well by
the maximumof the log spectrograms of the individual
sources [4]. Operating over small time-frequency re-
gions, this approximation holds well only if both sources
in question are not large and equal. In general, speech is
such that it is very unlikely that two sources will contain
a substantial amount of energy over a narrow frequency
sub-band and hence the approximation holds.

Second, we note that some of the previous works in
source separation incorporated factorial-HMMs in the al-
gorithms [2, 5, 6]. In our proposed work, we generalize
the factorial HMM to a much higher dimensional search
space using the sequential Monte Carlo (SMC) scheme,
which is a generalization of the traditional Kalman filter-
ing methods. We estimate a Markov chain X (source sig-
nal) from its noisy dependent variable Y, where the transi-
tion probability kernel for the chain generally depends on
a specified set of parameters. Thejointly optimal particle
filter is then that which maximizes the conditional distri-
butionP{Xn, · · · , X1|Yn, · · · , Y1}. Unlike the Hidden
Markov Model, the particle filter does not evaluate every
possibleXn though, and thus, handles the case whereXn



is drawn from a very large search space.

2. Particle Filtering

2.1. The Bayesian Approach

In the problem of estimating a set of hidden variables
(states) based on observations of the system, prior knowl-
edge of the unknown quantities can be exploited in a
Bayesian approach. If available, prior distributions and
the likelihood functions relating these distributions to the
observations can be integrated with Bayes’ theorem to
create a posterior distribution for estimating the states.

The model can be fundamentally expressed by a state
and an observation equation:

xt = ft(xt−1, vt−1) (1)

yt = ht(xt, wt) (2)

In the state equation,xt is the current state,ft is a tran-
sition function (possibly non-linear), andvt is the associ-
ated noise process. The second equation represents simi-
lar quantities to generate the observationyt.

Given a set of observationsyt and the set of unknown
sourcesx, the following is the posterior distribution [4]:

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
(3)

where

p(yt|Yt−1) =
∫

p(yt|xt)p(xt|Yt−1)dxt (4)

We note thatp(yt|xt) andp(xt) are the likelihood and the
prior distribution, respectively. Also,Yt above represents
y1:t. With this posterior distribution, optimal MMSE and
MAP estimators can be defined. For a linear Gaussian
system, the state-space approach can be solved analyt-
ically via a Ricatti equation (or iteratively by Kalman-
Bucy filters). The Extended Kalman Filter allows for
non-linearity, by first linearizing the system using Tay-
lor series expansions. Unfortunately, this filter has a pos-
sibility of divergence when the non-linear functions are
poorly approximated. Furthermore, real world data is
generally high dimensional, non-linear, non-stationary,
and non-Gaussian, leaving the above intractable.

2.2. Monte-Carlo Particle Filters

The hidden statext is modeled as a Markov process
with initial distributionp(x0) and transition probabilities
p(xt|xt−1). The goal is to estimate the posterior distri-
bution p(Xt|Yt) and associated features useful in com-
puting the following step’s distribution. The following
set of equations summarize the stochastic setup, begin-
ning with the formulae for posterior distribution given by

Bayes’ Theorem and its recursive version:

p(Xt|Yt) =
p(Yt|Xt)p(Xt)∫

p(Yt|Xt)p(Xt)dXt
(5)

p(Xt+1|Yt+1) = p(Xt|Yt)
p(yt+1|xt+1)p(xt+1|xt)

p(yt+1|Yt)
(6)

The marginal distributions are obtained recursively from
the following “prediction and update” equations:

p(xt|Yt−1) =
∫

p(xt|xt−1)p(xt−1|Yt−1)dxt−1 (7)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)∫
p(yt|xt)p(xt|Yt−1)dxt

(8)

2.3. Steps of Particle Filtering

• Sampling - DrawNs particles,1 ≤ i ≤ Ns, from
the prior [7]:

x∗it ∼ π(xt|Xi
t−1, Yt) ∼ π(xt|xi

t−1, yt) (9)

• Re-Sampling - Assign the particle a weightwi
t:

wi =
p(yt|x∗it )∑Ns

j=1 p(yt|x∗jt )
(10)

Re-sampleNs times from the discrete distribution
to generate samplesxi

t such thatp(xj
t = x∗it ) = wi.

Set the following and repeat the above steps:

Xi
t = (Xi

t−1, xi
t) (11)

3. System Description

The model of the system is based primarily on the particle
filtering algorithm along with various speech processing
primitives built into the procedure (figure 1):

Pitch Extraction : An open-loop pitch value is ex-
tracted from the input over each frame, to be used as one
of the pitch values from which the adaptive pitch code-
book is generated.

MFCC Codebook: The VQ codebook design is
based on the LBG algorithm. The codebook consists only
of MFCC vectors, along with a transition probability ma-
trix p(xt = µk|xt−1 = µi) that specifies the probability
of a transition from centroidµi to µk.

Particle Design: Each particle consists of two quan-
tized MFCC vectors. Pitch, voicing, and turbulence am-
plitude information could be included as other source
states, but we have pursued alternate methods of includ-
ing this information.

Initialization/Sampling : For the first frame, the
MFCC vectors in the particles can be initialized randomly
or in a predefined manner. In a simplified experiment,
random versus structured initialization resulted in neg-
ligible differences. As the size of the codebook grows,
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Figure 1: System Block Diagram

the need for some structured initialization might become
necessary (or if the training quality for each of the quan-
tized vector decreases). For subsequent frames, sampling
is performed based on the transition probability matrix
from the codebook.

Create Envelope: The spectral envelopes,̃X(w) and
Ỹ (w), corresponding to reconstruction chains is obtained
by inverting the quantized MFCCs.

Adaptive Pitch Codebook: All pitch frequencies
within 50Hz of the open-loop pitch frequency, or within
50Hz of the previous frame’s pitch in the same chain, are
considered to be pitch candidates.

Add Pitch: Harmonic window spectra of these
pitches are generated. The log DFT spectrum is created
by adding this harmonic window spectrum to the spectral
envelope.

Amplitude Gain : The amplitude gain is modeled as
a three-way MMSE estimator, modeling the amplitudes
of two periodic window spectra and a high pass filtered
noise spectrum. The gain valuesα, β, andη are multi-
plied with the two periodic window spectra and the noise
spectrum, respectively, and the components are finally
summed to give an estimatêZ(w) of the observed log
magnitude spectrumZ(w).

Given observation Z(w), voiced components
V1(w), V2(w), and noise componentN(w) in power
spectral domain, computeα, β, η such that

Ẑ = α · V1 + β · V2 + η ·N (12)

Minimization of
∑

w(Z − Ẑ)2 gives us the following re-
sult: 


α
β
η


 = R−1

V1V2N




2RZV1

2RZV2

2RZN


 (13)

where

RV1V2N =




RV1V1 RV1V2 RV1N

RV2V1 RV2V2 RV2N

RNV1 RNV2 RNN


 (14)

and
RV1V2 =

∑
w

V1(w)V2(w) (15)

The fine structure components of the spectra are given as
follows:

X̂(w) = α · V1 + η ·N (16)

Ŷ (w) = β · V2 + η ·N (17)

The model log magnitude spectra as given as follows:

X(w) = log(X̃(w)) + log(X̂(w)) (18)

Y (w) = log(Ỹ (w)) + log(Ŷ (w)) (19)

Compute likelihood: The reconstructed spectra are
merged into a single log magnitude output spectrum
Ẑ(w) via a maxoperation over the frequencies in each
frame:

Ẑ(w) = max(X(w), Y (w)) (20)

The distance between the observed and reconstructed
spectra is then simplyD = (Z − Ẑ)2.

We also apply a penalization to the reconstruction
candidates whose pitch values have changed by more
than 10% relative to the previous frame. We suppose that
the pitch transition penalty kernel can be described by

Pt =
1√
2πσ

e−
q2

2σ2 (21)

where
q = F0(t)− F0(t− 1) (22)

Hence, we obtain the following:

log(P i
t,k) = − q2

k

2σ2
− log(

√
2π)− log(σ) (23)

log(P i,j
net) = D + log(P i

t,1) + log(P j
t,2) (24)

whereP i
t,k is the cost associated with the pitch change

qk in thekth source. Furthermore,i, j ε {1, · · · , R} for
some arbitrary values of R, which represents the number
of values in the pitch range.



5 10 15

6

2

2 6
−3

−2

−1

5 10 15

6

2

F
re

q
u

e
n

c
ie

s
 i
n

 K
H

z

5 10 15

6

2

5 10 15

6

2

5 10 15

6

2

2 6
−3

−2

−1

2 6

−3

−2

−1

2 6
−5

0

2 6
−5

0

Frequencies in KHzTime Index (frame number)

Figure 2: Left column: Top plot shows the mixture ob-
servation. Plots 2 & 4 are original sources; 3 & 5 are
reconstructions. Right column: spectra of one particular
frame from each corresponding spectrogram.

Compute normalized weights: We then compute
normalized weights for each of the particles using equa-
tion 10, with the likelihood as given in equation 24.

Re-sampling: New particles are defined as those con-
taining a new set of MFCC vectors, one for each chain
tracked by the particle (each chain tracked by the parti-
cle corresponds to explaining one of the two sources in-
volved in the mixture). We also store back pointers to the
particles from which the transition occurred for later use.

Final Reconstruction: At the end of the above com-
putations for all frames of the observation, a Viterbi type
back-traversal procedure is used to reconstruct the se-
quence of frames that provides the optimal probability
(or equivalently, the two source sequences that are most
likely to explain the observation sequence).

4. Results

The system was tested with a mixture of two sources, one
male and one female. Pitch frequencies for the adaptive
codebooks were centered around the two pitch frequen-
cies with the largest average autocorrelation peak, aver-
aged over the whole utterance. Pitch penalization was
applied as described previously. The MFCC codebook
was generated from the original source vectors. This sim-
plification essentially implies a very good training in the
general case. The algorithm was tested with five differ-

ent segments of about 20 frames each. Source recon-
structions from one such segment are shown in figure 2.
These first results demonstrate the system identifying the
sources quite precisely from the mixture shown. Other
segments for both sources gave similar successful results.
The most noticeable difference between the original and
synthesized spectra is the shape of each harmonic peak.
Each peak in the synthesized spectrum is the modulated
transform of a Hamming window, but peaks in the orig-
inal spectrum are much wider. The pitch estimates are
decent, but frames were observed often that contained a
non-negligible pitch deviation. More study is required to
track the pitch more successfully in such cases.

5. Conclusions

We have demonstrated that it is possible to separate two
sources via particle filtering, and by modeling the pitches
and amplitude gains separately. There is room for further
improvement perhaps by better modeling the shape of the
harmonic spectral peak.
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