
c© 2004 by Aaron Scott Cohen. All rights reserved.

A SURVEY OF MACHINE LEARNING METHODS FOR PREDICTING
PROSODY IN RADIO SPEECH

BY

AARON SCOTT COHEN

B.S., University of Illinois at Urbana-Champaign, 2002

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2004

Urbana, Illinois

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 BACKGROUND ON PROSODY 3
2.1 Theoretical Linkage of Prosody and Syntax 3
2.2 Prior Efforts to Predict Prosody 5
2.3 Conclusion . 7

CHAPTER 3 ALGORITHMS USED 8
3.1 Information Theory Basics . 10
3.2 C4.5 . 10

3.2.1 Tree generator . 11
3.2.2 Rule generator . 13

3.3 Slipper Learner . 15
3.3.1 RIPPER . 15
3.3.2 Slipper algorithm . 16

3.4 QUEST . 19
3.4.1 Finding discriminant coordinates 19
3.4.2 Linear . 20
3.4.3 Univariate . 22

3.5 Neural Network . 25
3.6 Bayesian Learning . 26

CHAPTER 4 METHOD . 28
4.1 Preprocessing . 29
4.2 Formulation of the Data . 29
4.3 Testing for Prosody . 30
4.4 Interpreting the Results . 31

CHAPTER 5 RESULTS . 34
5.1 First Data Set . 34
5.2 Second Data Set . 39
5.3 Third Data Set . 44

iii

CHAPTER 6 ANALYSIS . 52
6.1 Accent Prediction . 52
6.2 Prosodic Boundary Prediction 56
6.3 Summary . 63
6.4 Suggestions for Future Work 63

CHAPTER 7 CONCLUSION 65

APPENDIX A COMPOSITION OF DATA SET 2 67

APPENDIX B COMPOSITION OF DATA SET 3 70

APPENDIX C SOFTWARE SOURCES 73

APPENDIX D RAW DATA FROM SEVERAL
LEARNERS . 74

APPENDIX E C4.5 RULES ACCENT PREDICTION . . 79

APPENDIX F SYNTACTIC LABELS 81
F.1 Bracket Labels . 81

F.1.1 Clause level . 81
F.1.2 Phrase level . 81

F.2 Part of Speech Tags . 83

REFERENCES . 85

iv

CHAPTER 1

INTRODUCTION

Manual prosodic transcription of large corpora is very expensive. Therefore

it is desirable to have methods to automatically transcribe prosodic infor-

mation with reasonable accuracy. Since large corpora exist that only have

text transcriptions, such as Switchboard [1], if prosodic transcriptions could

be made from text transcriptions then prosody dependent speech recogni-

tion could be extended to larger domains. To eliminate unintentional bias

caused by human transcribers and create a system that can be implemented

on corpora without punctuation marks, it is desirable to have a system that

is highly automatic. As breaths can be marked reliably using machine meth-

ods, as shown in Price et al. [2], a system using breaths to divide text into

“sentences” could be used in most environments.

This thesis compares the efficacy in prosody prediction of different ma-

chine learning algorithms on the Boston University Radio News Corpus [3].

These algorithms yield up to 83.1% accuracy on predicting accent (compared

to 57.4% baseline) and up to 89.8% accuracy in prediction of boundaries with

phrasal and intermediate boundaries folded together (compared to 80.9%

baseline).

Chapter 2 will provide a general overview of both the linkage between

prosody and syntax in linguistic theory and past efforts to model both

prosodic boundaries and stress.

Chapter 3 will describe the prosodic model used in this thesis and a

discussion of each learning algorithm used. These methods include tree based

learners, rule generators, neural networks, and naive Bayes systems.

Chapter 4 will present the formulation of the data, how to run the learn-

ers, and how to read the output of the learners.

1

Chapter 5 will present a discussion of the results. This is split in two main

sections, one discussing prediction of accent, the other discussing prediction

of prosodic boundaries. At the end of the chapter there are suggestions for

future work.

Chapter 6 will be a summary of the thesis.

Following the chapters will be appendices detailing the location of the

implementations of algorithms used, the full results, the labels for part of

speech and syntax information in each of the data sets, and the frequencies

of the labels appearing.

2

CHAPTER 2

BACKGROUND ON
PROSODY

2.1 Theoretical Linkage of Prosody and

Syntax

The theory that prosody of speech is related to the syntactic structure of

the utterance is not a recent development. In 1970 Laver noted that “tone-

groups” existed with one very prominent syllable in a string of about seven

syllables. The boundaries of these units often matched those of the syntactic

clause. He even noted that slips of the tongue provided evidence since they

generally involved the prominent syllable and only rarely was there interfer-

ence between two tone-groups [4]. More recently, Chafe [5] reports that in

writing, people write while thinking about the way the text would be spoken

with the assumption that the reader would speak from the text the same way

and interpret the meaning from the internal dialogue. Thus, the reader and

writer are able to experience auditory information even where the writing

does not show these features well. A possible way to detect this relation is to

have people read text aloud, with the caveat that this does not exactly cor-

respond to natural speech. Adding to the difficulty is that different readers

often assign prosodic information differently to the same written texts.

Much recent research in prosody has been for the purpose of improving

the intelligibility and naturalness of text-to-speech systems. In this research,

accent has been found in many studies to be related to part of speech infor-

mation, or a restriction of these such as content versus function words [6]-[9].

The difference between content and function words, as well as a definition,

3

are found in Lee [10]. In this paper, Lee found that important words in

speech tended to be stressed. The stressed words tended to be verbs, ad-

jectives, adverbs, and nouns while the more predictable words were reduced.

These grammatically predictable words included articles and prepositions.

The first category contains the “content” words while the second contain the

“function” words.

Swerts and Geluykens [11] found that prosody features appear to be used

to separate information units. This allows speakers to mark the start and

end of units through the manner in which they speak. This view is shared

by Shattuck-Hufnagel [12] who notes that evidence of direct influence on

phonology by syntax has been observed in a number of ways. For example,

prosody’s use in differentiating syntactically ambiguous phrases, the devia-

tion of intonational phrases from their usual position based on surrounding

words, and the final lengthening at syntactic boundaries all indicate some

degree of connection between prosody and syntax.

Conjunctions (e.g., and, but, next) are used lexically to link together

segments of text while indicating their connection. Conjunctions often have

pitch boundaries at their end and generally are either immediately followed

or preceded by a pause [13]. Because of this, conjunctions tend to occur with

prosodic events, which intuitively makes sense since both are providing extra

information. Breaks between nouns are atypical, but in certain structures,

such as a lot of nouns in sequence, prosodic breaks are more likely to exist

[14].

Major prosodic breaks are also correlated to pauses for breathing [2]. In

a limited study on radio news, 85% of sentence boundaries occurred dur-

ing periods where the speaker took a breath. Likewise, 53% of intonational

phrase boundaries were marked by a breath. Despite this high correlation

between breaths and boundaries, the presence of any pause does not neces-

sarily indicate a prosodic break [11], [15] but instead might just be caused by

hesitation. Pauses are useful because they occur more often during prosodic

breaks and last longer in breaks [15].

In a test comparing human performance marking boundaries between peo-

ple provided with both text and the corresponding speech versus text alone,

the feasibility of marking boundaries with just the textual information can be

seen. In this experiment on Dutch speech, all punctuation was removed and

subjects were told to mark the paragraphs, without being given a definition

4

of a paragraph. It was found that both groups of untrained transcribers had

the paragraph markers in similar positions, although the agreement among

the subjects is higher in the group of subjects provided with the audio input.

It was assumed that more people agreeing on a boundary indicated a stronger

boundary, and excluding the markers of no boundary (which dominate the re-

sults) there is a high Pearson correlation between the two transcriber groups

of 0.82. Most of the data that did not show exact correlation between the

two transcriber groups differed on the side of greater agreement among the

subjects given access to the audio input [16]. These results suggest that it

is possible to get fairly high accuracy in automatic boundary prediction us-

ing purely text based methods, although the expected performance would

increase with the inclusion of audio data.

2.2 Prior Efforts to Predict Prosody

One early automatic parser done by Price, Ostendorf, and Wightman [2] was

based on duration and breath modeling. Using a very small database, they

were able to get 90% correct lexical stress on a 25-sentence set. The study

also found breath detection to be a good criterion for predicting boundaries

with 53% of intonational phrase boundaries and 85% of sentence boundaries

marked by breaths. As 93% of the breaths were correctly detected, this

indicator can be found robustly. In addition to breath detection, their system

also used duration to predict breaks. Work on using duration of aligned

phones with additional acoustic features for boundary prediction continued

with Wightman and Ostendorf [17], [18]. More advanced work was done

by Wang and Hirschberg [19] with classification and regression tree (CART)

techniques, using part of speech information, presence of accent immediately

before or after the potential boundary, and acoustic information, such as

utterance and phrase duration. When adding hesitations and disfluencies to

the definition of intonational phrase boundaries, this system achieved 83%

accuracy using predicted accents in place of the manually transcribed accents

as one of the inputs to the tree.

Ross [20] looked at the problem of accent prediction in more depth, even

trying to determine which syllable of a word is accented. This is done in a

second pass using the predicted accented words. The decision tree for pre-

5

dicting whether or not a word was accented included: eight categories for

part of speech, the part of speech of the previous and following words, more

detailed information about the word class (e.g., content word, proper noun),

prosodic phrase structure, paragraph structure, new/given information sta-

tus, and labels of surrounding units. The limit of part of speech categories

to eight groups is due to a limitation in CART that allows it to handle a

maximum of eight categories.

Similar work was done by Hirschberg and Rambow [21], who used 12

classes for part of speech, the length of a sentence, position of the word, and

an enhanced tag, called a supertag in a five-word window. The supertags are

names of trees from [22] and each supertag is essentially a part of speech tag

with information about things such as whether a verb is in active or passive

voice. Coupled with this is information obtained from a syntactic feature de-

pendency tree, e.g., the size of the subtree headed by the current word. Using

all of these features together, an error rate of 10.2% was found in predicting

intonational phrases compared to a baseline error of 20% on a corpus of read

text from the Wall Street Journal. In a later experiment [23], Hirschberg

trained a decision tree for predicting pitch accent. Of all of the syntactic

variables, the tree only used a word’s part of speech, which she concluded

meant that although adding more training data might increase performance,

adding more variables will not. The study also investigated predicting phrase

boundaries, and for this, the work had minimal syntactic parse information

but used extensive information on distances from boundaries and position

within utterances. For the algorithm, the presence of stressed words, one of

the features used, was obtained using only features that could be identified

automatically. Including this, the features used were a window of four words

for part of speech, the predicted accent immediately before and after the

potential boundary, the mutual information of the words in the four-word

window, position of the word in the utterance, relationship with the nearest

noun phrase, and constituency information. Using this feature set, an accu-

racy of 88.4% was achieved on the DARPA Air Travel Information Service

corpus with intonational and intermediate phrase boundaries combined as a

single unit. In the radio news domain, Hirschberg [8] used CART methods

and distinctions between new and given information, contrast, cue phrase

and five additional categories on a small sample on the Radio News Corpus

correctly predicting 82.4% of accents.

6

Simon Arnfield [6] used part of speech information but did not use parse

trees. At the time of this work, no high accuracy syntactic parsers were

available, so the study was limited to using word class and bigram frequen-

cies. The study included several speaking styles, but on news broadcasts it

correctly marked 92% of the words in the training set, with 52.9% of the

overall words in the corpus stressed.

2.3 Conclusion

Based on this evidence, we expect to find a high correlation between stress

and part of speech information. Deeper syntactic information, such as whether

or not the word is at the start or end of an utterance and its position within

clauses is expected to influence stress, although at a much lower level of

significance than part of speech.

For intonational phrase boundary, it is expected that there will be a high

correlation between prosodic boundaries and syntactical boundaries. For

example, intonational boundaries are likely present between the closing of

one syntactic clause or major subclause, and the opening of the next. Part

of speech information may play a contributing role, but should not be the

primary determiner.

The relationship between syntactic and prosodic information is investi-

gated using multiple algorithms from the machine learning literature. The

relative importance of syntactic information is determined by examining the

decision tree structure, the decision rules, and the boosted decision rules

to see which features are invoked and how important they are to the final

decision.

7

CHAPTER 3

ALGORITHMS USED

This thesis seeks to answer a scientific question and a technological question.

The scientific question is: What kind of relations exist between syntactic

parsing data and prosodic information? The technological question is: How

do we find a system that can best be used to prosodically transcribe unseen

speech data? For this problem it is important not only to have reasonable

results, but also to be able to adapt to new environments where the rules

for determining the prosody might be slightly different but not enough data

exists to create the starting environment.

For determining relationships between prosody and syntax, the most ap-

propriate recognizer for this problem is likely a decision tree based learner.

The problem fits the criteria that a decision tree is generally best suited for

[24]. Namely, the target function is a yes/no question for both accent and

boundary. The training data will contain errors and the instances in the

training data have a fixed number of attribute values. Even the numeric

cases (number of openings and closings of clauses) is discrete and over a very

limited domain. This compares favorably with an artificial neural network,

since there is no good way to define the attribute values for the parts of

speech, which have numerous options each of unknown influence on the out-

come (e.g., NN vs. NNP vs. VBD). A tree-based learner also has the benefit

of being more human legible than the output of most learning algorithms.

In cases where the output is not human legible, it is possible to convert the

tree into a series of if-then clauses which are human legible, at the cost of a

penalty in performance.

For the second task, we do not care about being able to understand the

results, so the set of usable algorithms can be expanded. If understanding

8

the meaning of the output is not important then neural network or Bayesian

methods can be used. For a neural network learner, it would be necessary

to allow one input for each of the parts of speech, but this would result in

adding 151 more features to the feature set. The computational complexity

of this approach is too high for too many rounds of training, but it has the

benefit that trained weights can be used as a starting point for retraining the

learner on any new environment, such as telephone conversations.

Similarly, Bayesian learning results can be incrementally improved to

adapt to new training sets. This can be done by setting the a priori val-

ues of the new target system to the output of the original. It also will need

fewer features than the neural network because of the lack of multiple levels,

and more importantly it will give a probabilistic measure of the presence of

prosodic features. Therefore, if it gives results comparable to those of the

other learning algorithms, Bayesian learning will be good for extending the

learner to new prosodic domains.

If everything within an utterance affected the probability of a prosodic

event ei at word i, then the probability of an event would be p(ei|o1, . . . , on),

where oj contains all of the observations that can be made textually at word

j and there are n words in the utterance. Because of evidence that hu-

mans do not plan speech far in advance, it is assumed in this thesis that

p(ei|oi−2, oi−1, oi, oi+1) ≈ p(ei|o1, . . . , on), where stress occurs on the word

corresponding to oi and prosodic boundary occurs between the words cor-

responding to oi−1 and oi. Further, it is assumed that a syntactic parser

summarizes long-term context in the label for each word, so oi−2 and oi+1

only contain information about part of speech while oi−1 and oi contain full

syntactic parse information and not just the part of speech.

In the following sections, the algorithms tested in this thesis will be de-

scribed. All were tested using freely available distributions of the algorithms

with the addresses for the versions used listed in Appendix C. The algorithms

used and described were C4.5, QUEST, SLIPPER, an implementation of an

Artificial Neural Network, and a Naive Bayes Learner.

9

3.1 Information Theory Basics

When analyzing different machine learning algorithms, it is useful to have

some background in information theory. This section is meant as a refresher

and very brief introduction to information theory.

The first thing to understand is the measure of uncertainty in the variable.

This is defined as the entropy of a system. The simplest case involves a binary

split of examples. For this case, in a set S, there are p positive examples and

n negative examples. The entropy of S with respect to this classifier is

Entropy(S) ≡ − p

p + n
log2

p

p + n
− n

p + n
log2

n

p + n
(3.1)

In the more general sense, if there is a set of objects S which can be seperated

into n different subsets Si with no overlap, the entropy is

Entropy(S) ≡ −
n
∑

i=1

|Si|
|S| log2

|Si|
|S| (3.2)

Entropy is measured in bits and signifies the average number of bits of

information needed to distinguish the class of an object within a set. This

means that if a set contains only examples from one group, it has an entropy

of 0 since it is perfectly separated. If there are only two possible classes

but there is an even distribution, the entropy is 1 since you would always

need to be given an extra bit of information to determine the class. Entropy

cannot be less than 0, but the general goal of machine learning is to lower the

entropy based on observable events to get a reasonable guess at the actual

class an object is in.

3.2 C4.5

This section describes the internal workings of release 8 of the C4.5 algorithm.

Most material in this section is based on the presentation in [25] with any

updated algorithms and implementation details substituted for those from

the original book version (release 5).

C4.5 works off of the divide and conquer principle. The simplest descrip-

tion of how it works is as follows: It starts with all of the cases joined together

at the top and splits the data up into parts based on a splitting rule. Each of

10

these parts represents a smaller problem which is easier to work with. These

problems are again split until eventually the tree is formed.

As with other decision trees, C4.5 uses a greedy algorithm that is biased

towards shorter trees with high information gain splits close to the root.

Although no learner can be perfect, a noteworthy limitation of all of the

tree learner algorithms is that they do not perform well when the tested

relationship involves a linear combination of attributes. Since decision trees

cannot divide the data set by any attributes that are not known, quantized

in some manner, and included in the tests, a decision tree divides the results

into hyperplanes othogonal to the various attributes available. If the actual

relation is a linear combination between two of the attributes, then it is

impossible to truly map this relation. Instead, the decision tree will create

smaller and smaller rectangles that more finely track this line as more data

is available. If this condition occurs, it is expected that the decision tree will

grow rapidly with data. This problem is not present in all of the learners

tested, for example the neural network learner which performs very well on

relationships involving linear combinations of attributes.

3.2.1 Tree generator

At the start, C4.5 groups some of the words in the training set together to

select a subset, called a window, of the data. This initially was for memory

reasons, but it had the unintended benefit of generally creating more accurate

trees. This window is chosen in a way that tries to make the distribution of

classes within fairly uniform, which tends to give better starting points even

in highly skewed data sets. After training on the window, the resultant tree

is run on every example in the training set, and the examples it got wrong

are evaluated. At least half of these are added to the window and a new

tree is built on this expanded window. The cycle repeats until it reaches a

stopping criterion or until the trees stop increasing in accuracy. The use of

windowing also allows multiple trees for the same data to be constructed,

which allows more trees to choose from for best results and more trees to

base the rule generator on.

The trees themselves are constructed by picking the “best” attribute to

split on, and dividing the data into two or more groups. This attribute has

to be determined by some criterion, and in C4.5 the criterion is a variant on

11

the information gain. Information gain is the drop in entropy caused by the

split. This is determined by taking the difference between the entropy of the

system before the split and the weighted entropy after the split. For a set S

over an attribute with subsets Sv, the gain is determined by this relation:

Gain(S, Attribute) ≡ Entropy(S) −
∑

v∈Attribute

{

|Sv|
|S| × Entropy(Sv)

}

(3.3)

This test was strongly biased towards splits that have many outcomes, basi-

cally spreading out the data into as many small buckets as possible.

To reduce this bias, a new criterion for picking the “best” split was cre-

ated, the gain ratio. Its purpose is to estimate the information gain that is

useful. To avoid trivial splits, the information gain from (3.3) must also be

at least the average over all of the tests looked at. The reference used to

compare all of these gains is the amount of information that is gained by just

splitting the data into those classes. For example, if there are 8 cases in a

4-way split, simply splitting it into 4 parts gives 2 bits worth of information

since there is now only 1 bit needed to determine which case it is. In a 2-way

split, you would need 2 bits to have the same thing. Therefore, any test that

would split it into 4 groups would have to have a lot more gain than a test

splitting it into 2 groups to ensure the information gain is not caused simply

by the extra bit of information given in the encoding. The exact formula used

by C4.5 to figure out the gain ratio, with n being the number of partitions

from splitting on the chosen attribute, is

Gain Ratio(S) =
Gain(S, Attribute)

−∑n
i=1

{ |Si|
|S| × log2

|Si|
|S|

} (3.4)

Using the above gain ratio has the added benefit of generally giving smaller

trees, but it has a tendency to favor unbalanced trees with one of the subsets

much smaller than the rest.

To fix an initial bias in continuous attributes, a different cost function

based on the Minimum Description Length (MDL) principle is used [26]. This

theory basically evaluates the cost of transmitting the partitioning theory

plus how much it costs to indicate the cases that do not follow the theory,

known as exceptions. Under a normal split, the reduction in exceptions cost

is given by |S|×Gain(S, T), where S is the set of data and T is the test. For

12

a continuous case, this has to be modified due to the increased number of bits

to send the information compared to other tests. As there are N-1 possible

thresholds for a A ≤ thresh test, this test would take an extra log2(N − 1)

bits. To compensate for these additional bits, Gain(S, T) can be reduced by
log2(N−1)

|S| , where there are N-1 possible thresholds for the continuous value.

There is also a modification to the gain ratio for continuous cases to prevent

it from heavily favoring splitting the data in half. Instead, for continuous

variables it just chooses a threshold for maximizing gain. The choice of

whether or not to include the test in the tree is made from the gain ratio

with the only change from normal operation being the use of the adjusted

gain.

Instead of deciding when to stop while building the tree, C4.5 overbuilds

the tree and then prunes it after it is finished running. This is done to prevent

overfitting the data and to improve performance on unseen cases with the

added benefit of being simpler. Pruning will also cause leaves to contain

examples from multiple cases, since there is no longer a perfect assignment

of an output to a leaf. This pruning is done by collapsing subtrees into single

leaves and assigning each leaf the most common class. In C4.5, this pruning

is done using only the training data the original tree was built on using

pessimistic pruning. This is done using a confidence measure and acting as

if the errors are observed events of a random process and the total number

of samples in the leaf is the number of trials. The cases are treated as if they

are part of a binomial distribution. Based on the single run of N trials, it

is possible to put a confidence bound on the percentage of trials where the

event (error) occurs. The upper confidence bound on this is used as if it is

the actual error. The predicted number of errors of a subtree is simply the

sum of the predicted errors in each of its branches.

3.2.2 Rule generator

Once trees have been constructed, it is possible to create decision rules. These

rules are expected to have worse performance than the decision trees, but in

exchange for this sacrifice the results can be made much simpler for humans

to understand. On certain trees, it is also possible to reduce fragmentation

by creating decision rules. Simply writing a rule that covers each leaf would

not substantially simplify the tree, so it is necessary to look for ways to merge

13

rules to cover multiple cases (or leaves of the initial tree) [25].

Initially, the simplistic method of writing a rule per leaf is used. These

rules need to be generalized, which is done by first creating a contingency

table for the first rule chosen. For each rule, the contingency table is 2 × 2,

and is divided in one direction by whether or not the examples satisfy the

deleted condition, or in other words whether or not it satisfies the initial rule.

In the other direction, it has a distinction between being part of the target

class or not being part of it. Every example that fulfills the rule after the

change is used to find the number of cases that belong in each location in the

table. Using the same upper confidence bound test from the tree building,

the rule (missing one condition) with the lowest pessimistic error is compared

to that of the original rule, and if lower replaces it. This is repeated until

the rule cannot be made more general without increasing the estimated error

rate. Rule generalization is done for each path of the original tree, and when

this is finished the final rule set needs to be picked.

Once the final rules are all created, they are divided by class. A subset

of these rules is chosen randomly. Each round, the percentage of the overall

possible rules contained in the subset increases and greedy searches for new

rules are performed. Rules are chosen using the MDL principle to try to

reduce the combined theory and exception cost. The subset with the lowest

combined cost is used. To prevent some poor costs using the standard MDL

schemes, a modified scheme is used that is biased towards having roughly

equal numbers of false positives as false negatives while keeping the overall

number of errors low. With D being the dataset, C and U being the cases

covered and uncovered by the rule, respectively, e being the total errors, and

fp fn being the false positives and negatives, the total exceptions cost is

cost = log2(|D| + 1) + fp × (−log2(
e

2C
))

+(C − fp) × (−log2(1 − e

2C
)) + fn × (−log2(

fn

U
))

+(U − fn) × (−log2(1 − fn

U
)) (3.5)

By picking candidate rules with the lowest cost, the unimportant rules can

be weeded out, leaving only those that increase the accuracy of the full set

of rules [27].

14

3.3 Slipper Learner

Slipper works by using a simple rule builder repeatedly and combining the

outcomes as a weighted sum of the rules. If this sum exceeds a threshold, the

test is positive. This process is called boosting, and the concept of boosting

is to use many weak rules and combine them together to create a better rule.

If a rule has its criteria met, a counter with an initial bias has a fixed value

added to it. This continues down the set of rules, with each rule that has its

conditions met adding to the counter and the other rules doing nothing. Since

it uses an initial rule builder similar to that of RIPPER, the rule generation

of RIPPER is discussed here.

3.3.1 RIPPER

Ripper was created as a rule learner that scales well with the sample size on

noisy data. Many algorithms try to overfit a decision tree and then prune

the data using reduced error pruning, but this has the drawback of being

very inefficient computationally. One attempt to overcome this problem is

by direct construction of rules using an algorithm called incremental reduced

error pruning (IREP). This performed reasonably well compared to other

learners using significantly less resources, and with modification became a

program called RIPPER (Repeated Incremental Pruning to Produce Error

Reduction).

RIPPER is a divide and conquer algorithm that does a greedy search for

the best rule and immediately removes all data that fulfills the conditions of

the rule. The available data is split into a growing set and a training set,

with the growing set containing 2/3 of the data. The rule is found using

FOIL (First Order Inductive Logic). At every stage, FOIL considers adding

conditions of either matching an attribute or satisfying a greater than/less

than comparison on a continuous attribute. The condition that maximizes

the information gained by FOIL is used [28].

At every step, FOIL looks at all positive cases that do not satisfy any

existing rules and all negative cases. It initializes the possible rule so every

positive example that is left satisfies it. As long as negative cases fulfill the

conditions of the rule or the rule becomes too complex, it finds an attribute

to add to the testing and uses it to form a new rule. This process is repeated

15

until the stopping conditions are found, and then it begins with what is

left of the positive clauses and all of the negative ones. To determine the

new attribute most likely to make the prediction better, a variant of the

information gain is used. With a set of all examples fulfilling the conditions

of the rule S, having S+ positive examples, a subset S′ being the set of

examples that fulfill the new version of the rule with the added attribute A,

and s = |S+
⋂

S ′|, the gain can be determined by

infoFOIL(S) = −log2(
S+

|S|)

gainFOIL(A) = s × (infoFOIL(S) − infoFOIL(S ′)) (3.6)

[29] Here, the information is the knowledge conveyed by knowing the ex-

amples fulfilling the conditions of the rule should be classified as positive

eamples, with the gain partially dependent on the number of positive exam-

ples that fulfill the conditions of the new rule to favor learning rules that

cover many examples.

Once FOIL has given its possible rules, RIPPER immediately prunes

them on the pruning set P . With P+(−) being the set of positive (negative)

samples in the pruning set and p+(−) being the number of positive (negative)

pruning set samples covered by the tested rule, RIPPER removes a single

attribute in order to create the rule “rule′” that maximizes

g(rule′, P+, P−) ≡ p+ − p−
p+ + p−

. (3.7)

If the value of g for rule′ is greater than the value of g on the original rule,

the attribute is eliminated and the process repeats until no attribute deletion

can improve g. The overall stopping criterion for adding rules is based on

MDL principles to keep the rules from overfitting the data. There are also

some more extensions to the pruning process for the actual implementation

of RIPPER which are contained in [28] that are not relevant for the present

discussion but are available for the interested reader.

3.3.2 Slipper algorithm

SLIPPER trades off some comprehensibility of its results for performance

gains. This is true of all boosting algorithms, and it is caused by the un-

16

even weighting of the various conditions in determining the final outcome.

SLIPPER (Simple Learner with Iterative Pruning to Produce Error Reduc-

tion) produces rules as in RIPPER above, but instead of removing covered

examples from the training set it reduces the weight of examples that fulfill

conditions of existing rules to make it more beneficial for the learner to find

rules that cover new examples, as in AdaBoost (see [30], [31] for original

algorithm). This allows rules that do not apply to a particular example not

to alter the decision of the final output while the applicable rules add their

weight to the vote. Additionally, there are no rules with negative confidence

rating to maintain some amount of intelligibility to the ruleset. Instead, there

is an initial default rule that is negative so it could take multiple active rules

for the sum to exceed 0 to classify the example as a positive.

At the start of training, every example has equal weight, and the sum

of all of the weights is 1. As each rule is chosen it is assigned a confidence

value, and this value is used to update the weighting of all of the examples

that fulfill the conditions of the rule. New rules are made and the weights

updated until the stopping criterion is met. At every step, the sum of the

weights of all of the examples stays 1. The final hypothesis is determined

by the sign of the sum of all fulfilled rules’ confidence values, including the

default rule.

The general AdaBoost update rule over a data set S with weights S(i),

value yi (-1 if example is negative, 1 if positive), value of t’th rule on example

xi rt(xi), and a scalar Zt which normalizes the weights to sum to 1 for rule

t is St+1(i) = St(i)×e−yirt(Si)

Zt
, where Zt is as small as possible.

For the specific implementation used by SLIPPER, denoting the set of

examples fulfilling the conditions of the rule Rt and the other examples R′
t,

the normalizing factor is

Zt =
∑

xi∈R′
t

St(i) +
∑

xi∈Rt

St(i)e
−yirt(xi)

or

Zt =
∑

xi∈R′
t

St(i) +
∑

xi∈Rt:yi=−1

St(i)e
rt(xi) +

∑

xi∈Rt:yi=1

St(i)e
−rt(xi) (3.8)

After including a smoothing factor of 1
2n

to prevent infinite confidence

17

values, Zt is minimized by setting

rt(xi) =











1
2
ln

∑

xi∈Rt:yi=1
St(i)+

1
2n

∑

xi∈Rt:yi=−1
St(i)+

1
2n

if xi ∈ Rt

0 if xi ∈ R′
t

(3.9)

After simplification, Equation (3.8) becomes

Zt = 1 −




√

∑

xi∈Rt:yi=1

St(i) −
√

∑

xi∈Rt:yi=−1

St(i)





2

(3.10)

which is minimized by trying to maximize

Ẑt =
√

∑

xi∈Rt:yi=1

St(i) −
√

∑

xi∈Rt:yi=−1

St(i) (3.11)

With the equation to maximize by the rules determined, it is possible to

try building the rule. SLIPPER first starts with a blank rule that covers

every example, and then iterates adding a new attribute that maximizes Ẑt.

This continues until there are no negative examples in the rule or Ẑt is no

longer improved. After the rule has been found, it will be necessary to prune

the rule. Working with the data split for the pruning set, let P+(−) denote

the number of positive (negative) examples in the pruning set covered by

the rule divided by the total number of examples in the pruning set. Then,

to prune, rt is found using the full rule on the test set, with the value of rt

always equal to 1
2
ln

∑

xi∈Rt:yi=1
St(i)+

1
2n

∑

xi∈Rt:yi=−1
St(i)+

1
2n

here. Then find the single attribute

to remove from the rule to minimize

(1 − P+ − P−) + P+e−rt(xi) + P−ert(xi) (3.12)

This is repeated as often as possible, and then compared against the default

rule. Whichever has the lowest value for Ẑt will be returned to the booster.

There is a five-way cross-validation run on the training set to determine the

number of rounds to train on by setting the number of rounds equal to the

number of rounds that produces the lowest average error on the holdout

data. To keep this from running forever, an initial value is set which is the

maximimum number of rounds the cross-validation sets will run.

18

3.4 QUEST

QUEST (Quick, Unbiased, Efficient, Statistical Tree) was designed to de-

velop trees with reduced bias. This is because exhaustive searches (like those

performed by C4.5 and most other tree learners) tend to prefer selections

that have many splits over ones that do not. This can also lead to develop-

ment of theories that have little relation to any pattern that may actually be

present. QUEST uses initial analysis to determine which variable to split on

instead of blindly splitting on every variable to test the gain. Using analysis

to determine which splits will be considered has the added advantage of de-

creasing computational complexity since fewer splits will be tested. Unless

otherwise noted, everything in this section is based on [32].

3.4.1 Finding discriminant coordinates

For both linear and univariate versions of QUEST it is necessary to convert

multivalued discrete categorical variables into variables for which a distance

metric can be defined. This is done by transforming each discrete variable

to a linear discriminant coordinate (CRIMCOORD) value. By mapping dis-

crete variables into 0-1 dummy vectors, the CRIMCOORDS can be made.

One problem with this method is it can lead to singular covariance matri-

ces if care is not taken in the transformation. To avoid difficulties with

singular matrices without potentially splitting the node into more than two

subnodes, the attribute values not present are eliminated before the mathe-

matical transformation. For example, let X be a discrete variable represented

in the subset being investigated, where xi ∈ {a1, a2, . . . , am} and where all m

possible values are used by at least one example in the training data. This

can then be converted into a binary vector by making a vector that is 0 at

every component except for the one corresponding to the attribute present.

Thus, X ⇒ v =< v1, v2, . . . , vm >′ where X = ai ⇒ vi = 1, vj = 0 ∀ j 6= i.

In order to use this information, it is necessary to find the average value

of the vector v, v(k), in each output class k. This is done by adding the

vector for all examples vi in the set being investigated corresponding to the

output class k and then dividing it by the number of examples used. Using

this method, v(k) = 1
N(k)

∑N(k)

i=1 vi, where N (k) is the number of examples

contained in output class k. This is expanded to cover all output classes by

19

combining all of the v(k) together as follows:

v =
1

N

K
∑

k=1

(

N (k) × v(k)
)

where N is the total number of examples and K is the total number of output

classes.

Now that the discrete variable has been converted into vector form, it is

possible to transform it into CRIMCOORD values using standard discrimi-

nant analysis. This is done by making M × M matrices

B =
K
∑

k=1

(

N (k)(v(k) − v)(v(k) − v)′
)

(3.13)

W =
K
∑

k=1

N(k)
∑

i=1

(v
(k)
i − v(k))(v

(k)
i − v(k))′ (3.14)

T = B + W (3.15)

The CRIMCOORD is determined by first finding the vector a′ that maxi-

mizes the ratio a
′
Ba

a′Wa
. If W−1 exists, then a is the eigenvector with the largest

eigenvalue of W−1B.

After finding the vector a, the CRIMCOORD is made by projecting v

along a as a′v.

3.4.2 Linear

In QUEST, a “linear” tree is one with each node in the tree computing a

linear combination of attributes. The path from the node is determined by

comparing this linear combination against some threshold, with these splits

continuing until eventually a final output is chosen.

To perform linear combination splits, first create an observation vector

z with the numerical attributes and the numerical projection of the discrete

category from Section 3.4.1. The vector z is z =< z1, z2, . . . , zm >′ with

zj equaling the numerical value if the attribute has one or a′
jvj where j is

an indicator of which discrete attribute in the sequence is being transformed

into continuous form as shown in Section 3.4.1, 1 ≤ j ≤ m. There will be one

value of z for every example in the training set, and these will be combined to

form the matrix Z with the z for each example being its own column. Next,

20

perform singular value decomposition. With N training examples and H a

square matrix with every value −1
N

except along the diagonal which has value

1− 1
N

and D being a diagonal matrix with all values greater or equal to 0 listed

by descending values (i.e., d1 ≥ d2 ≥ . . . ≥ dm ≥ 0), solve HZ = PDQ′

where P and Q are unitary matrices. Define ε as the machine precision (the

smallest value that can be added to 1 that will make the outcome greater

than 1 for the computer). Assuming there are more training examples than

attributes, every eigenvalue di is set to 0 if di ≤ Nd1ε, and D is reformed

using these values. Let F be the matrix that consists of the columns in Q

that have nonzero corresponding values in D, and let U be a diagonal matrix

that consists of the inverses of all nonzero values in D.

For each output class k, define a matrix Lk =
[

z(k) − z, . . . , z(k) − z
]

with Nk columns. Then fill a matrix G with an entry for each output class

by setting G = [L1, L2, . . . , LK]′ with K being the total number of output

classes. This means that B = G′G where B is from Equation (3.13). After

finding the eigenvector a with the largest eigenvalue of the matrix GFU,

this is used to find ξ. Transform every example z to a value of ξ by setting

ξ = a′UF′z.

Once ξ has been found, the 2-means algorithm of [33] is used. Since the

cases we are interested in only have two output classes each, for discussion

the method used can be simplified to just two output classes. Normally all

of the data has to be split into two superclasses that can contain multiple

classes using the same 2-means algorithm. In our case it is possible to just

find the mean and variance of each class k. These will be denoted µk and σ2
k

for the mean and variance of class k, respectively. The prior probabilities pk

for each class can also be found by dividing the number of examples in class

k by the total number of examples.

Using φ(x) = e−
x2

2√
2π

(the usual normal distribution), the boundary between

classes is the set of ξ that satisfy

p1σ
−1
1 φ{ξ − µ1

σ1

} = p2σ
−1
2 φ{ξ − µ2

σ2

} (3.16)

where 1 and 2 indicate the two output classes k, with 1 being the class with

more examples. Taking the logarithm of both sides, the equation

((σ1)
2 − (σ2)

2)ξ2 + 2(µ1(σ2)
2 − µ2(σ1)

2)ξ + c = 0

21

where

(µ2σ1)
2 − (µ1σ2)

2 + 2(σ1)
2(σ2)

2 log

[

p1σ2

p2σ1

]

= c (3.17)

can be solved with the roots being the split.

If the two variances are the same, and the two means are different, there

is only one root with

ξsplit =
µ1 + µ2

2
− (µ1 − µ2)

−1(σ1)
2 log

[

p1

p2

]

If the two variances and two means are the same, there is no split since there

is no way way to seperate the two distributions, so the algorithm just sets

ξsplit = µ1.

If the variances are different, there are three possible cases for determin-

ing ξsplit. If (2(µ1σ
2
2 − µ2σ

2
1))

2 − 4(σ2
1 − σ2

2)c < 0, then set ξsplit = µ1+µ2

2
.

Otherwise, if it is possible to get two nonempty nodes by setting ξsplit to

whichever of the two roots
−2(µ1σ2

2−µ2σ2
1)±
√

(2(µ1σ2
2−µ2σ2

1))
2−4(σ2

1−σ2
2)c

2(σ2
1−σ2

2)
is closer to

µ1, then ξsplit is set to be that root. If both of the prior cases fail to set ξsplit,

then revert to defining ξsplit = µ1+µ2

2

The stopping rule is given in [34]. The rule says that the algorithm above

continues until additional splits no longer cause the error rate to decrease,

or only one class in the node has more examples than a set minimum. The

error rate is found not to decrease if

N
∑

i=1

C(l(t)|i)p(i|t) ≤
N
∑

j=1

{
N
∑

i=1

C(l(tj)|i)p(i|tj)}

where N is the number of output classes, each tj corresponds to a child node,

l(t) is the label assigned to the node, and C(l(t)|i) is the misclassification

cost.

3.4.3 Univariate

A second type of tree can be built by QUEST. This tree is the “univariate”

type where each node can only have its immediate descendants determined

by a binary split on a single attribute. When splitting on an attribute with

a discrete set of values, the values are partitioned into two distinct subsets

22

through use of discriminant coordinates.

To avoid bias that can easily exist with a combination of discrete and

numerical variables, it is necessary to use care in determining how to rank

variables for split selection. This is done using the Pearson χ2 test for cate-

gorical variables and using ANOVA on the continuous variables.

First it is necessary to know how to use ANOVA (analysis of variance)

for testing ordered statistics. If there are J possible output classes, we use

ANOVA on an attribute with distribution X in the following manner. De-

fine X as the average value of X and X (j) as the average value of X in

class j. Then find the overall sum of squares SSX by setting it equal to
∑

Xi∈X(Xi − X)2. In the same fashion it is possible to find the sum of

squares for each class and use it to define the sum of squares for all outputs,

SSX(J)
=
∑J

j=1

∑

Xi∈X(j)
(Xi − X (j))

2. Once this has been found, the F-value

is found to be

FX =
SSX − SSX(J)

SSX(J)

× N − J

J − 1
(3.18)

If it is necessary to find the Levene [35] F-statistic, it is done as follows.

Compute the averages as in ANOVA. Then, instead of using the sum of

squares, use the absolute deviations (L1 instead of L2 norm). Thus, ‖X −
X‖1 =

∑

Xi∈X

∣

∣

∣Xi − X
∣

∣

∣ and ‖X(J) − X (J)‖1 =
∑J

j=1

∑

Xi∈X(j)
|Xi − X(j)|.

With this definition,

F(LEV ENE)X
=

‖X − X‖1 − ‖X(J) − X(J)‖1

‖X(J) − X (J)‖1

× N − J

J − 1
(3.19)

In either case, it is possible to find the P-value for the test. The P-value

is Pr(Z ≥ F). A lower P-value is desirable, as it indicates with greater

certainty that this split is significant and did not happen purely by chance.

For discrete variables there is only one test done, but it is used in both

the initial decision round and the second chance decision round. If a discrete

variable takes N values, and there are C classes in the node, then the chi-

square with (C − 1)(N − 1) degrees of freedom is used. If the smallest P

value resulting from division of any attribute is under a threshold, then the

split it corresponds to is used. If this fails, Levene’s F-test is computed for

the continuous variables, and the P values for the new continuous F-test and

the original discrete tests are compared to a secondary threshold. If this also

fails, the attribute with the lowest P value from the first test is used.

23

Continuous attribute split point selection

The algorithm to determine the split point for continuous variables is less

involved. Here you can just do a direct application of Equation (3.16). Again,

p1 corresponds to the output class with the most examples. The split happens

in exactly the same fashion as in the linear case starting immediately after

Equation (3.16) occurs in that algorithm.

Discrete attribute split point selection

If a discrete attribute is picked, the split point is determined in a very similar

fashion as in the linear version of QUEST. To alter the algorithm, first replace

z with z =< z1, . . . , zN >′, where there are N categories for the discrete

variable and zi = 1 if category i is active, 0 otherwise. Z is the matrix

created by finding the value of z for each example and making them all their

own column, as in the algorithm for linear combination splits. Letting M

equal the number of examples and assuming more examples than attributes,

the eigenvalues that are less than Md1ε are now defined as zero. There are no

other changes that need to be made to the algorithm used for linear splits,

except the dimensions of matrices will change, and after the value of ξ is

found to make the split on, it will have to be converted to a set of values for

the attribute that are in each node.

Alternate splitting criteria

While running the program, there are four alternate cost functions that can

be used for splitting discrete categories in place of the χ2 function. These

four additional options are the likelihood statistic (also used by C4.5), Gini

index, mean posterior improvement (MPI), and a criteria that is altered by an

initial user setting. In this thesis, the likelihood ratio was the only additional

algorithm found to perform the best on any distribution. For a discussion

of the three criteria not used as well as the two that are used, see [36]. The

two class generalized likelihood statistic G2 with pL and pR being vectors

containing the relative proportion of each output class in the left and right

subnodes, p being the relative proportion of each output class in the root

node, NL and NR being the number of examples in the subnodes, and the

24

superscript indicating the output class, is

G2 = 2 ×
(

NL

2
∑

i=1

(pi
L log2(

pi
L

pi
)) + NR

2
∑

i=1

(pi
R log2(

pi
R

pi
))

)

(3.20)

3.5 Neural Network

Multilayer neural networks have a series of inputs to first layer sigmoids, and

the output of these sigmoids are the inputs of other sigmoids until the final

layer where the output is formed. A sigmoid basically sums all of its inputs

together with an initial bias and passes the result through a nonlinearity. In

order for an update algorithm to work cleanly, this has to be a differentiable

function that behaves similarly to a unit step response in that once a thresh-

old is crossed, the amplitude becomes full. The sigmoid function is defined

as

σ(y) ≡ 1

1 + e−y
(3.21)

which is differentiable everywhere as d σ(y)
d y

= σ(y)×(1−σ(y)). Alternatively,

the tanh function can be used.

Assuming there is at least one hidden layer, the Backpropagation algo-

rithm is generally used as the update rule. For a more general treatment of

the algorithm and a thorough derivation of the rule see Mitchell [24]. For this

type of network, let xi be the input to unit i, and wji be the weight from i

to j. After creating the initial network and initializing all weights to random

small numbers, send each training example through the network. For the

final network output, find its error term. With of being the output of the

system, t being the correct output, and η being a user assigned learning rate,

E ≡ 1

2

∑

Training data

(t − of)
2 (3.22)

∂E

∂xf

= of (1 − of)(t − of) (3.23)

∀ hidden units h connected to the output, calculate the error, eh

eh =
∂E

∂xh

= oh(1 − oh) wfh
∂E

∂xf

(3.24)

∀ hidden units a connected to hidden units b1, b2, . . . , bn

calculate the error, ea

25

ea =
∂E

∂xa
= oa(1 − oa)

∑

bi∈b1,b2,...,bn

wabi
ebi

(3.25)

Update every weight within the network using:

wji = wji − η
∂E

∂wji
(3.26)

This is carried out for every example in the training set and then repeated

until some stopping criterion is met [24].

3.6 Bayesian Learning

The naive Bayes classifier can be used to get a learner that outputs a prob-

ability measure that indicates the likelihood of the prosodic event under

consideration [24]. With an attribute value set < a1, a2, . . . , an > associated

with an instance with target value yi which is 1 in the presence of the target

event, otherwise 0, the goal is to find the most probable target value:

yMAP = arg max
yi∈0,1

P (yi|a1, a2, . . . , an)

= arg max
yi∈0,1

P (a1, a2, . . . , an|yi)P (yi)

P (a1, a2, . . . , an)

= arg max
yi∈0,1

P (a1, a2, . . . , an|yi)P (yi) (3.27)

For simplification, naive Bayes assumes that the various attributes are

conditionally independent from each other but not the target value. Thus

P (a1, a2|yi) = P (a1|yi) × P (a2|yi) to use a simple example with only two

attributes. Thus, the naive Bayes classifier finds

yNB = arg max
yi∈0,1

P (yi)
n
∏

j

P (aj|yi) (3.28)

by substituting into Equation (3.27). This requires us to only estimate the

distinct P (aj|yi) terms, which is much smaller than the full set from Equation

(3.27). For discrete attributes with more than two options, it is necessary to

split the set into separate attributes each indicating the presence or absence

of a single option of the attribute.

For continuous attributes, WEKA follows the procedure outlined in [37].

Although traditionally a single Gaussian is used to model a continuous vari-

able, in this updated version a kernel density estimation is used instead. This

26

is advantageous since a Gaussian estimator has only two degrees of freedom

(mean and variance).

If the continuous attribute is X and the class label is again yi, the kernel

estimator function is

p(X = x|Y = yi) =
1

n

∑

j

1√
2π σi

e
− (x−µj)2

2(σi)
2 (3.29)

Here, j goes across every example of class yi in the training data, n is the

number of training points, and µj = xj so the estimator is a sum of a large

number of Gaussian distributions each centered at a data point. There is no

certain way to guess the best value of σi, but it should shrink to zero as there

are more examples. A rule that works fairly well over most distributions is

to set σi α 1√
ni

, where ni is the number of examples with class i.

27

CHAPTER 4

METHOD

To train and test the dependence of prosody on textual information, a large

enough corpus is required. For this the Boston University Radio News Cor-

pus [3] was used. This corpus used read speech, but the speech was read

several times, which would make any required locations for prosodic infor-

mation clear and provide insight into locations where boundaries and accent

are optional but not required. Although it has part of speech information

following the Penn Treebank [38] standards included, to test the feasibil-

ity of prosodically marking other corpora, this information is discarded and

replaced by part of speech information automatically generated. Likewise,

punctuation markers were eliminated from the transcription before syntactic

parsing, since punctuation marking is not always available and may bias the

system towards human placed boundary markers such as periods and com-

mas. To replace the punctuation marks, transcribed breaths were used to

determine the starting and ending of “sentences” as input to the parsers. As

breath detection can be done with high accuracy, this seemed a reasonable

way to break long chunks of text into sizes usable by the parsers without

introducing significant human transcription bias. The prosodic information

was transcribed according to the ToBI [39] system.

Although the artificial style may not accurately reflect the prosody of

normal speech, it may be more instructive for finding prosodic patterns since

newscasters have been found to use clearer and more consistant prosody than

normal speech. Speech from seven speakers (three female, four male) are in

the corpus with two of the female speakers accustomed to reading news live

and the four male speakers, and the other female speaker accustomed to pre-

recording news stories. For this study, a subset of the corpus containing the

28

three female speakers and two of the male speakers was used. The corpus

had an agreement between transcribers of 91% in presence versus absence of

accent, and 95% for prosodic boundaries.

4.1 Preprocessing

Before machine learning methods can attempt to discover relationships be-

tween accent, prosodic breaks, and syntactic features it is necessary to label

the syntactic features. To make the predictions more applicable for data sets

without any marked punctuation, all punctuation marks, including apos-

trophes, were stripped from a prosodically transcribed corpus, the Boston

University Radio News Corpus [3]. Then the data was run through Roth’s

shallow parser [40], [41] for part of speech information and Charniak’s parser

[42] for deeper syntactic structure and part of speech information.

4.2 Formulation of the Data

For the first data set, the part of speech information came from the Roth

parser. For prediction of accent, the part of speech was all the information

available to the learner, but there were a variety of windows. For prosodic

boundaries, a small subset of syntactic information from the Charniak parser

was used. Here, using the names the Charniak parser uses, only the openings

of a SENT, NP, VP, PP, ADJP, ADVP, and SBAR were used. This limited

set was only used to mark the syntactic information on the word immediately

after potential boundaries. This simplified form was used to rapidly test out

the theory of prosodic dependence on syntax and to allow larger numbers of

runs from C4.5, which is a very time consuming algorithm on large data sets.

For the second data set, all of the syntactic information from the Char-

niak parser is used, and the part of speech information from Roth’s parser

is discarded in favor of the part of speech information from the Charniak

parser. In addition, the number of openings and closings of clauses given by

the parser is used as a variable. The full data set consists of a four-word

window of part of speech information and a two-word window of syntactic

information. This is arranged so there is part of speech information for two

words before and after prosodic breaks and the full syntactic information

29

set for the word immediately before and after the prosodic break. The full

syntactic information is the number of openings and closing of clauses, and

which clauses are opening and closing (e.g., NP, CONJP, ADJP, ...). For

a full listing of the attributes used by the Charniak parser and how often

they appear in the test and training sets, see Appendix A. There are other

possible tags that the Charniak parser can give, but these were never seen in

the Radio News Corpus.

For the third data set, syntactic information from the Charniak parser is

combined into categories and the information from Roth’s parser is discarded

in favor of the part of speech information from Charniak. With the exception

of this combination, every other aspect of this data set is the same as that

used in the second run. For a list of the parts of speech used and how the

full set was combined, see Appendix B.

For all runs, the data are matched with the accent and the boundary

markers made for [43]. For training of the trees, the dataset was divided

with 90% of the transcriptions used for training and 10% for testing. This

resulted in 19 344 words in the training set and 2068 words for the test set.

This also resulted in 3767 prosodic breaks (19.5%) in the training set and

395 (19.1%) in the test set. For accent, there were 10 840 (56%) accented

words in the training set and 1188 (57.4%) in the test set.

4.3 Testing for Prosody

To prevent unnecessary splitting of the data, a separate run for each learner

is made for accent information and boundary information. The boundary

information was also presented in two forms, preboundary and postboundary,

to see if either marker of the boundary performs better. In the detection of

prosodic breaks, detection of the word immediately following a boundary

had superior performance, in this thesis only the post-boundary results are

considered. The data is transformed into comma delimited sets using a Perl

script with a field for every used separation criterion. After the data set

is created, the test variable is pasted at the end. These test variables are

created by using a combination of a Perl script and hand alignment, with the

hand alignment simply a check to ensure the tested attribute matches the

word by making sure the word matches (performed every couple of hundred

30

words).

This data was then fed to the various recognizers. For the C4.5 recognizer,

the option to allow multiple tests on the same attribute was used, so at a

node there could be a test on whether or not the part of speech was any

combination of the parts of speech available. For SLIPPER, the default

options were used. For QUEST, 10 runs per data set were made, 5 each

for multivariate and univariate splits. The default options were used for

each splitting criterion were used. The neural network was trained with 10

iterations through the data, a decaying learning rate, and with the option of

building the structure automatically. The final structure was the same for

both the accent and prosodic boundary prediction tasks, with one hidden

layer containing 92 nodes for data set 2 and 134 nodes for data set 3.

4.4 Interpreting the Results

Once the data has been trained, it is necessary to read the trees to implement

them. The exact method is slightly different for each algorithm, but they will

be summarized here. For C4.5, the trees grown were large, and so detailed

that it looks like the true nature of the problem is not being modeled. The

first thing to do is to go to the end of the log file and find the tree with the

best performance. This is the tree marked with a “<<” in the evaluation

segment. Then start from the beginning and look for the first “Simplified

Decision Tree” after the trial number listed. This is the pruned decision

tree. Then, each line represents the question asked at the node. If there

is a decision made, immediately after the colon the output is listed. The

numbers in parentheses indicate the number of examples likely to fall under

that node, and of those, how many are errors, respectively. If there is no

decision made at that node, the lines immediately below the node that are

indented one level more than the parent node are the child nodes. This

continues until all of the decisions have been made. To get an estimate of

the accuracy of the resulting tree, it is necessary to go back to the end of the

file where the evaluation section is. Here is indicated the number of errors on

the test data after pruning, and the predicted error rate. If those numbers

are close together, then the classifier generalized roughly as well as predicted

on unseen results. The log file also contains the confusion matrix for the best

31

tree. The columns indicate the output of the classifier, the row indicates the

actual class. This is the convention that will be adopted for this thesis.

More reliable results can often be achieved with the rule form of the C4.5

classifier. These rules have the added benefit of being easier to read. To

implement the rules, first find the composite ruleset. Then set the output

variable to the “default” class listed at the bottom. After this is done, the

various rules are tested in order, with the output assigned by the first rule

that applies to the test case. The order of implementation within an output

class does not matter, and all of the possible output classes have their rules

separated. The percentage indicator at the end of the rule is the predicted

accuracy of the individual rule. The higher the percentage (and earlier the

rule) the more important it is to the system. The overall error of the ruleset

can be seen at the end of the logfile with the error rate on the “**” ruleset,

with the confusion matrix for the set listed directly above it.

For SLIPPER, finding the output requires the use of a dummy value. The

rules can be tested in any order, and if the test case fulfills a rule, add to the

dummy variable the amount indicated in the parentheses. For all cases except

for the “default” these values are positive, which means that every rule can

only increase the chance of the desired output. Likewise, rules with larger

weighting are more important, so it is possible to understand which rules

are more important than the others. Once every rule has been evaluated,

if the dummy variable is positive, then the output is the nondefault value.

Otherwise it is the default value, which is generally the output that occurs

the majority of times. The error rates for SLIPPER are listed at the end of

the log file, with the predicted range of the error on unseen cases given in

the parenthesis.

Unlike the other algorithms, QUEST gives the option of creating an out-

put that can readily be visualized when in the univariate mode as shown in

this example (see Figure 4.1). For the subsets that are shown in the tree,

it is necessary to look at the log file which will have the full decision tree.

Also in the log file will be the confusion matrix for the tree on the training

set. The linear combination version of QUEST returns results that cannot

readily be analyzed by humans but can be implemented. The results given

are the coefficients for creating the equivalent of a multilayer perceptron with

the discriminate coordinates and linear coefficients given with the node they

32

are used in. As in the univariate version, a confusion matrix for performance
on the training set is given.

Last Word POS

Sentence Open

∈ S1

�

Boundary

T

Current Word POS

F

Last Word POS

∈ S2

Current Word POS

∈ S3

Next Word POS

∈ S4

�

Boundary

∈ S5

SBar Open

/∈ S5

�

Boundary

T

�

NULL

F

Two Back Word POS

/∈ S4

Next Word POS

∈ S6

�

Boundary

∈ S7

�

NULL

/∈ S7

�

NULL

/∈ S6

�

NULL

/∈ S3

�

NULL

/∈ S2

Sentence Open

/∈ S1

	

Boundary

T

NULL

F

Set Contains Does not contain
S1 JJR, JJS, NN, NNP, NNS, UH, VBN, VBP,

VBZ
CC, CD, DT, EX, FW, IN, JJ, MD, NULL,
PDT, PP$, PRP, RB, RBR, RBS, RP, TO,
VB, VBD, VBG, WDT, WP, WP$, WRB

S2 CC, DT, EX, IN, JJR, JJS, MD, PP$, PRP,
RBR, TO, VBD, VBG, VBP, VBZ, WDT,
WP, WP$, WRB

CD, JJ, NN, NNP, NNS, PDT, RB, RBS, RP,
VB, VBN

S3 JJS, NN, NNP, NNS, UH JJR, VBN, VBP, VBZ
S4 CC, DT, PP$, PRP, TO, WDT, WP, WRB EX, IN, JJR, JJS, MD, RBR, VBD, VBG,

VBP, VBZ, WP$
S5 CD, IN, JJ, MD, NNP, PRP, RBS, TO, VBD,

VBG, VBP, VBZ, WP, WRB
CC, DT, JJR, NN, NNS, PP$, RB, VB, VBN

S6 CD, FW, JJ, NN, PP$, TO, VBN, VBZ, WDT,
WP, WRB

CC, DT, IN, JJR, JJS, NNS, PDT, PRP, RB,
RP, VB, VBD, VBG, VBP, WP$

S7 CD, JJR, PP$, RB, RBR, TO, VB, VBD,
VBG, VBN, WP

CC, DT, EX, IN, JJ, MD, NN, NNS, PDT,
PRP, RP, VBP, VBZ, WDT, WRB

Figure 4.1: Example decision tree from QUEST. The tree is built on the first
data set, testing for prosodic boundary, modified to be easier to read.

33

CHAPTER 5

RESULTS

In this chapter, the results from the various configurations in predicting

prosodic information will be presented. It will be separated by configura-

tion and will include diagrams of successful learners. Every presented result

uses the same utterances for their training, and all of the test data comes

from the same set of utterances. The category “S1” indicates the start of a

“sentence” that the syntactic parser received, and since these are marked by

breaths, S1 is replaced with “breath” wherever it appears.

5.1 First Data Set

As stated earlier, this data set contained only part of speech information

for accent prediction with the addition of limited syntactic information for

prosodic boundary information.

For accent prediction, each run of C4.5 had 25 trials from which to pick

the best tree. Four different windows were used, with the current word being

the one tested for accent:

1. Current word POS

2. Current word POS and word immediately prior

3. Current word POS, word immediately prior POS, and word immedi-

ately after POS

4. Current word POS, word immediately prior POS, and two words back

POS

34

The error rates are shown in Table 5.1 below, with the configuration number

refering to the list above. As the error rate does not significantly drop be-

tween configuration 2 and either 3 or 4, the confusion matrix for configuration

2 is shown in Table 5.2.

Table 5.1: C4.5 performance on Accent prediction using Roth POS informa-
tion

Configuration Training Errors Testing Errors
1 3922 (20.6%) 417 (20.2%)
2 3529 (18.2%) 378 (18.3%)
3 3424 (17.7%) 376 (18.2%)
4 3369 (17.4%) 379 (18.3%)

Table 5.2: Confusion matrix on test set for configuration 2

Marked Accented Marked Unaccented
Actually Accented 1062 126
Actually Unaccented 252 628

Table 5.3: C4.5 rules performance on Accent prediction using Roth POS
information

Configuration Training Errors Testing Errors
1 3922 (20.3%) 417 (20.2%)
2 3590 (18.6%) 382 (18.5%)
3 3570 (18.5%) 375 (18.1%)
4 3539 (18.3%) 391 (18.9%)

The same configurations were run through C4.5’s rule generator. This

caused error rates similar to the tree form of C4.5, as is shown in Table 5.3.

The composite ruleset where the performance stops dropping, 3, has a simple

ruleset and a confusion matrix as shown in Table 5.4. The ruleset has the

output accented unless it falls under any of the following rules:

• CurrentWordPOS ∈ {WP$, TO, CC, DT, WP, PP$, EX, IN, PRP,

WDT, MD, WRB, RBS}

• (CurrentWordPOS ∈ {RBS, V BP, FW, V BZ, V BD, V B, RP}) ∧
(PriorWordPOS ∈ {FW, RP, CD, JJR, V BN, RB, V BG})

35

• (CurrentWordPOS ∈ {RBS, V BP, FW, V BZ, V BD, V B}) ∧
(PriorWordPOS ∈ {FW, V BZ, V BD, RP, CD, JJR, RB, JJ, V BG})
∧(NextWordPOS ∈ {CC, WP, EX, WDT, MD, V BP, V B, NS, NN})

• (CurrentWordPOS ∈ {V BP, V BD, V B}) ∧ (PriorWordPOS ∈
{DT, NN}) ∧ (NextWordPOS ∈ {CC, WP, EX, WDT, MD, V BP,

V B, NNS, NN})

Table 5.4: Confusion matrix on test set for C45 Rules, configuration 3

Marked Accented Marked Unaccented
Actually Accented 1042 146
Actually Unaccented 229 652

For SLIPPER, it is expected the output in configuration 1 will be the

same, but the rest subtly different. Slipper achieves accuracy on par with

C4.5 as the values in Table 5.5 match closely with those of Table 5.1. For

comparison purposes, a modified version of the rules is listed below. Listed

below are the boosted rules after transformation into individual rules by

hand, which was done for legibility purposes. This was only possible because

of the simplicity of the final rules. The current word was marked as accented

(default class) unless it matched any of these rules:

• CurrentWordPOS ∈ {TO, CC, WP$, DT, EX, IN, WP, PP$, PRP,

WDT, FW, WRB, MD}

• (CurrentWordPOS = “V BP ′′) ∧ (PriorWordPOS ∈ {V BG, RB,

CD, JJ})

• (CurrentWordPOS ∈ {V BP, V BD, V BZ, V B}) ∧ (PriorWordPOS

∈ {V BN, JJR})

36

Table 5.5: SLIPPER performance on Accent prediction using Roth POS
information

Configuration Training Errors Testing Errors
1 3922 (20.6%) 417 (20.2%)
2 3650 (18.8%) 384 (18.6%)
3 3614 (18.7%) 382 (18.5%)
4 3632 (18.8%) 381 (18.4%)

Due to the simplicity of the attribute set and the trend for a two-word

window outperforming a one-word window and being on par with the other

setups, QUEST was not run on the data set for accent prediction in the first

data run.

Prosodic boundary prediction

For prosodic boundary detection, a number of different configurations were

experimented with for C4.5, although not as many were used for any of the

other algorithms. The information available was described in Section 4.2,

and here POS will indicate use of part of speech information and SYN will

indicate use of Syntactic data. Following the convention that the prosodic

break the test is looking at occurs between the current and the previous

word, for C4.5, the data sets used were the following:

1. POS from two words before and two words after

2. POS from four words before and word after

3. POS from five words before and word after

4. POS from four words before, one word after, and SYN from word after

5. POS from two words before, two words after, and SYN from word after

The error rates for all five cases in C4.5 are given in Table 5.6, but only

case 5 was used in any other learners. The confusion matrix for case 5 follows

in Table 5.7.

37

Table 5.6: C4.5 performance on prosodic boundary prediction using Roth
POS and partial Charniak SYN information

Configuration Training Errors Testing Errors
1 2437 (12.6%) 299 (14.5%)
2 2014 (10.4%) 398 (19.2%)
3 1643 (8.5%) 323 (15.6%)
4 1481 (7.7%) 248 (12.0%)
5 1732 (9.0%) 229 (11.1%)

Table 5.7: Confusion matrix on prosodic boundary prediction with C4.5,
configuration 5

Marked Boundary Marked Nonboundary
Actually Boundary 214 181
Actually Nonboundary 48 1625

The ruleset for C4.5 rules was derived from the tree used in configuration

5 in C4.5 rules. SLIPPER and QUEST were also run off of this configuration,

with all five splitting criteria for both linear and univariate splits used. The

combined results (with only the best QUEST results) are shown in Table 5.8.

Table 5.8: Multiple algorithm performance on prosodic boundary prediction
using Roth POS and partial Charniak SYN information

Learner Training Errors Testing Errors
C4.5 Rules 2193 (11.3%) 251 (12.1%)
SLIPPER 2212 (11.4%) 237 (11.5%)
QUEST Univariate (G2) 2098 (10.8%) 246 (11.9%)
QUEST Univariate (χ2) 2086 (10.8%) 247 (11.9%)
QUEST Linear (G2) 2065 (10.7%) 243 (11.7%)
QUEST Linear (χ2) 2165 (11.2%) 244 (11.7%)

The rulesets for SLIPPER and the univariate QUEST are both fairly

simple. For SLIPPER, there is no prosodic boundary unless:

• Start Sentence ∈ Current Word SYN

• (Current Word POS = “CC”) ∧ (Start PP /∈ Current Word SYN)

∧ ((Start SBar ∈ Current Word SYN) ∨ (Last Word POS ∈ <NNS,

NN>))

38

• ((Last Word POS ∈ <NNS, NN>) ∨(Start PP ∈ Current Word SYN))

∧ (Start SBar ∈ Current Word SYN)

• (Last Word POS = “NNS”) ∧(Start PP ∈ Current Word SYN)

While in the univariate QUEST, it follows the tree in Figure 5.1.

The confusion matrix for the QUEST linear G2 test, QUEST univariate

χ2 test, and SLIPPER test are given in Tables 5.9-5.11. These correspond to

Table 5.8 from above, with the decision models for SLIPPER and univariate

QUEST above.

Table 5.9: Confusion matrix for QUEST Linear G2 test

Marked Boundary Marked Nonboundary
Actually Boundary 176 219
Actually Nonboundary 24 1649

Table 5.10: Confusion matrix for QUEST Univariate G2 test

Marked Boundary Marked Nonboundary
Actually Boundary 288 207
Actually Nonboundary 39 1634

Table 5.11: Confusion matrix for SLIPPER

Marked Boundary Marked Nonboundary
Actually Boundary 202 193
Actually Nonboundary 44 1629

5.2 Second Data Set

For this data set, all syntactic and part of speech information came from

the Charniak parser. To reduce the number of inputs, various syntactic

categories were folded together and combined as is indicated in Appendix

A. For consistency, the same data set was used for both accent prediction

as well as prosodic boundary prediction. With the convention of the current

word being the word tested for accent (or for being immediately following

a prosodic boundary), prosodic information exists for two words back, one

word back, current word, and next word. Syntactic information exists on

39

Last Word POS

Breath

∈ S1

�

Boundary

T

Current Word POS

F

Two Back Word POS

∈ S2

Current Word POS

∈ S3

�

Boundary

∈ S4

Next Word POS

/∈ S4

Last Word POS

∈ S5

Current Word POS

∈ S6

�

Boundary

∈ S7

�

NULL

/∈ S7

�

NULL

/∈ S6

�

NULL

/∈ S5

�

NULL

/∈ S3

�

NULL

/∈ S2

Breath

/∈ S1

�

Boundary

T

	

NULL

F

Set Contains Does not contain
S1 NN, NNP, NNS, UH, VBN CC, CD, DT, EX, FW, IN, JJ, JJR, JJS, MD,

NULL, PDT, PP$, PRP, RB, RBR, RBS, RP,
TO, VB, VBD, VBG, VBP, VBZ, WDT, WP,
WP$, WRB

S2 CC, DT, IN, JJR, JJS, MD, PP$, PRP, RB,
TO, VBD, VBG, VBN, VBP, VBZ, WDT,
WP, WP$, WRB

CD, EX, JJ, NN, NNP, NNS, PDT, RBR,
RBS, RP, VB

S3 CD, FW, JJ, JJR, NN, PP$, TO, VBN, WDT CC, DT, IN, JJS, NNS, PDT, PRP, RB, RBR,
RP, VB, VBD, VBG, VBP, VBZ, WP, WP$,
WRB

S4 JJS, PP$, PRP, WDT, WP, WRB CC, DT, IN, JJR, MD, RB, TO, VBD, VBG,
VBN, VBP, VBZ, WP$

S5 CD, JJ, JJR, PP$, PRP, RB, RBR, TO, VB,
VBG, VBN, WP, WRB

CC, DT, EX, IN, MD, NN, NNS, PDT, VBD,
VBP, VBZ, WDT

S6 NN, NNS, UH VBN
S7 CC, IN, MD, RB, TO, VBG, VBN, VBP DT, VBD, VBZ

Figure 5.1: Decision tree for predicting prosodic boundaries on the first data
set using the univariate χ2 QUEST tree builder.

40

the current word and one word back, with open designating the start of a

syntactic unit and close designating the closing of a syntactic unit. The

configurations for each recognizer were standard, with the neural network

recognizer limited to 10 retrainings with decay (so each time it retrains it is

worth less) due to computation time.

The results for every classifier are listed in Table 5.12. It is instructive

to look at the confusion matrices for the univariate χ2 QUEST, C4.5 Rules,

and neural network learners, since they are a combination of the best human

legible learners and the best overall learner. These matrices can be found in

Tables 5.13-5.15.

Table 5.12: Multiple algorithm performance on accent prediction using com-
bined Charniak parser data

Learner Training Errors Testing Errors
C4.5 2843 (14.7%) 356 (17.2%)
C4.5 Rules 3336 (17.2%) 365 (17.6%)
SLIPPER 3358 (17.4%) 365 (17.6%)
QUEST Univariate (G2) 3370 (17.4%) 362 (17.5%)
QUEST Univariate (χ2) 3370 (17.4%) 362 (17.5%)
QUEST Linear (G2) 3395 (17.6%) 359 (17.4%)
QUEST Linear (χ2) 3395 (17.6%) 359 (17.4%)
Neural Network 3333 (16.9%) 350 (16.9%)
Naive Bayes 4241 (21.9%) 442 (21.4%)

Table 5.13: Confusion matrix for univariate χ2 QUEST test on accent pre-
diction, data set 2

Marked Accented Marked Unaccented
Actually Accented 1073 115
Actually Unaccented 247 633

Table 5.14: Confusion matrix for C4.5 Rules test on accent prediction, data
set 2

Marked Accented Marked Unaccented
Actually Accented 1062 126
Actually Unaccented 239 641

From C4.5 rules (and converting folded classes to their full forms), the

current word is accented unless

41

Table 5.15: Confusion matrix for neural network learner on accent prediction,
data set 2

Marked Accented Marked Unaccented
Actually Accented 1070 118
Actually Unaccented 232 648

• (Current Word POS ∈ <AUX, CC, DT, EX, IN, MD, PRP, PRP$,

TO, WDT, WP, WP$, WRB>) ∧ (Last Word POS /∈ <AUXG, FW,

RBS, WP$> ∧ (Next Word POS /∈ <CC, RP, UH, WDT, WP$>) ∧

(¬ Current Close <PP, S, SBAR, SINV, SQ, FRAG>)

• (Current Open Number ≥ 3) ∧ (Current Open <WHADJP, WHADVP,

WHNP>)

• (Next Word Pos ∈ <CD, EX>) ∧ (¬ Last Close VP) ∧ (Last Word

POS ∈ <CD, FW, JJ, JJR, JJS, MD, NN, NNS>) ∧ (¬ Current Close

<ADJP, ADVP, CONJP, INTJ>)

• (Current Word POS ∈ <AUXG, FW, RBR, RBS, RP, VBP>) ∧ (Last

Word POS ∈ <AUX, CC, DT, FW, IN, JJ, NN, NNS, PRP, RB, VB,

VBD, VBG, VBN, VBP, VBZ, WDT, WP, WRB>) ∧ (Next Word POS

∈ <FW, JJ, JJR, MD, NN, NNP, NNS, VB, VBN, VBP, VBZ>) ∧ (¬
Current Close PP) ∧ (¬ Last Close <WHADJP, WHADVP, WHNP>)

The tree made by the univariate G2 QUEST can easily be converted to

rule form, with the default being unaccented unless it follows either of the

following rules:

• Current Word POS ∈ <AUXG, CD, FW, JJ, JJR, JJS, NN, NNP,

NNS, RB, RBR, VB, VBD, VBG, VBN, VBP, VBZ>

• (Current Word POS = “PDT”) ∧(Next Word POS /∈ <AUX, CC, EX,

IN, NULL, RP, TO, VBP, VBZ, WDT, WP, WP$, WRB >)

• (Current Word POS ∈ <DT, RBS, RP, UH>) ∧ (Next Word POS ∈
<AUX, CC, EX, IN, NULL, PRP, RP, TO, VBP, VBZ, WDT, WP,

WP$, WRB>)

42

Prosodic boundary prediction

The same feature set is used to predict prosodic boundaries, with the po-

tential boundary falling between the last word and the current word. The

configurations used were also the same, and the results of these test are in

Table 5.16.

Table 5.16: Multiple algorithm performance on prosodic boundary prediction
using combined Charniak parser data

Learner Training Errors Testing Errors
C4.5 1439 (7.4%) 226 (10.9%)
C4.5 Rules 1945 (10.1%) 231 (11.2%)
SLIPPER 1950 (10.1%) 224 (10.8%)
QUEST Univariate (G2) 2039 (10.5%) 220 (10.6%)
QUEST Univariate (χ2) 1937 (10.0%) 229 (11.1%)
QUEST Linear (G2) 1846 (9.6%) 219 (10.6%)
QUEST Linear (χ2) 1911 (9.9%) 225 (10.9%)
Neural Network 1945 (10.0%) 216 (10.4%)
Naive Bayes 2316 (12.0%) 237 (11.5%)

Here, the best performance is achieved by the neural network followed

by the G2 test for univariate QUEST. The confusion matrices for these tests

as well as for linear G2 QUEST, C4.5, and SLIPPER are given in Tables

5.17-5.21 since linear QUEST, C4.5, and Slipper are not far behind in per-

formance.

Table 5.17: Confusion matrix for Neural Network on prosodic boundary pre-
diction, data set 2

Marked Boundary Marked Nonboundary
Actually Boundary 211 184
Actually Nonboundary 32 1641

Table 5.18: Confusion matrix for QUEST Univariate G2 test on prosodic
boundary prediction, data set 2

Marked Boundary Marked Nonboundary
Actually Boundary 207 188
Actually Nonboundary 32 1641

43

Table 5.19: Confusion matrix for QUEST linear G2 test on prosodic boundary
prediction, data set 2

Marked Boundary Marked Nonboundary
Actually Boundary 222 173
Actually Nonboundary 46 1627

Table 5.20: Confusion matrix for C4.5 on prosodic boundary prediction, data
set 2

Marked Boundary Marked Nonboundary
Actually Boundary 246 149
Actually Nonboundary 77 1596

Table 5.21: Confusion matrix for SLIPPER on prosodic boundary prediction,
data set 2

Marked Boundary Marked Nonboundary
Actually Boundary 226 169
Actually Nonboundary 55 1618

The legible C4.5 rule generator provides significantly poorer performance

than the other learners, but the tree generated by univariate G2 QUEST gave

high accuracy results. This tree is shown in Figure 5.2 with the clustered

syntactic information expanded to their original values.

5.3 Third Data Set

This data set was the same as that in data set 2, except here none of the

syntactic information was grouped. All of the program settings were the

same as in data set 2 to allow direct comparison of results.

The performance of every algorithm on predicting accent follows in Table

5.22.

44

Last Close Number

Current Word POS

< 2

Last Word POS

∈ S1

�

Boundary

123
137

∈ S2

�

NULL
3275
4282

/∈ S2

Last Word POS

/∈ S1

�

Boundary

128
137

∈ S3

�

NULL
11831
12507

/∈ S3

Current Open Number

≥ 2

Current Word POS

< 2

Current Close VP

∈ S4

�

Boundary

397
614

T

�

NULL
16
16

F

�

NULL
134
169

/∈ S4

�

Boundary

1401
1482

≥ 2

Set Contains Does not contain
S1 AUX, CC, EX, IN, MD, NNP, TO, WDT,

WP, WP$, WRB
AUXG, CD, DT, FW, JJ, JJR, JJS, NN, NNS,
PDT, PRP, PRP$, RB, RBR, RBS, RP, UH, VB,
VBD, VBG, VBN, VBP, VBZ

S2 NULL, RBS AUX, AUXG, CC, CD, DT, EX, IN, JJ, JJR, JJS,
MD, NN, NNP, NNS, PRP, PRP$, RB, RBR, RP,
TO, VB, VB, VBD, VBG, VBN, VBP, VBZ, WDT,
WP, WRB

S3 NULL AUX, AUXG, CC, CD, DT, EX, FW, IN, JJ, JJR,
JJS, MD, NN, NNP, NNS, PDT, PRP, PRP$, RB,
RBR, RBS, RP, TO, VB, VBD, VBG, VBN, VBP,
VBZ WDT, WP, WP$, WRB

S4 AUX, CC, DT, IN, MD, PRP, PRP$, RB,
RP, TO, VBD, VBG, VBN, VBP, VBZ

CD, EX, JJ, JJR, NN, NNP, NNS, RBR, VB

Figure 5.2: Prosodic boundary prediction tree on dataset 2. The numerator
indicates the number of examples in the training set correctly labeled; the
denominator indicates overall number of examples.

45

Table 5.22: Multiple algorithm performance on accent prediction using full
Charniak parser data

Learner Training Errors Testing Errors
C4.5 2828 (14.6%) 369 (17.8%)
C4.5 Rules 3284 (17.0%) 357 (17.3%)
SLIPPER 3343 (17.3%) 367 (17.7%)
QUEST Univariate (G2) 3384 (17.5%) 362 (17.5%)
QUEST Univariate (χ2) 3370 (17.4%) 362 (17.5%)
QUEST Linear (G2) 3381 (17.5%) 360 (17.4%)
QUEST Linear (χ2) 3381 (17.5%) 360 (17.4%)
Neural Network 3331 (17.2%) 354 (17.1%)
Naive Bayes 4278 (22.1%) 448 (21.7%)

Here, the performance leader was the neural network, closely followed by

the C4.5 Rules algorithm and the two univariate QUEST trees. Univariate

QUEST (χ2) performed slightly better on the training data than the G2

version. The confusion matrices for C4.5 Rules, univariate QUEST χ2, and

artificial neural network are below in Tables 5.23-5.25.

Table 5.23: Confusion matrix for C4.5 Rules on accent prediction, data set 3

Marked Accented Marked Unaccented
Actually Accented 1078 110
Actually Unaccented 247 633

Table 5.24: Confusion matrix for QUEST Univariate χ2 on accent prediction,
data set 3

Marked Accented Marked Unaccented
Actually Accented 1073 115
Actually Unaccented 247 633

Table 5.25: Confusion matrix for neural network learner on accent prediction,
data set 3

Marked Accented Marked Unaccented
Actually Accented 1066 122
Actually Unaccented 232 648

The ruleset given by C4.5 is slightly different from the others, since by its

46

composition it really is using “else if” clauses. It follows the rules and skips

to the very end once a rule has been activated. If no rule has been activated,

by default the word is unaccented. The rules are shown below:

• If((¬ Current Open UCP) ∧ (¬Last Open WHADJP)∧(¬Last Close

NX) ∧ (Current Word POS ∈ <AUX, CC, DT, EX, IN, MD, PRP,

PRP$, RBS, TO, UH, WDT, WP, WP$, WRB>) ∧ (¬Current Close

<VP, PP, SBAR>) ∧ (Last Word POS ∈ <NULL, AUX, CC, CD,

DT, EX, IN, JJ, JJR, JJS, MD, NN, NNP, NNS, PDT, PRP, PRP$,

RB, RBR, RP, TO, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP,

WRB>) ∧ (Next Word POS ∈ <NULL, AUX, AUXG, CD, DT, FW,

IN, JJ, JJR, JJS, MD, NN, NNP, NNS, PDT, PRP, PRP$, RB, RBR,

RBS, TO, VB, VBD, VBG, VBN, VBP, VBZ, WRB>)) ⇒ Unaccented

• Else If((¬Current Open S) ∧ (Two Back Word POS ∈ <CC,DT,IN,JJ,

NN,NNS,RB>) ∧(Next Word POS ∈ <CD,VBN>) ∧ (Last Word POS

∈ <CD,FW,MD,NN>)) ⇒ Unaccented

• Else If((¬Current Open ADVP)∧(¬Last Close SBAR)∧ (Last Close

WHADVP)) ⇒ Unaccented

• Else If((Current Open PRT)∧(¬Current Close NP) ∧ (¬Last Open

SINV) ∧ (Two Back POS ∈ <AUX,MD,NN,PRP,VB>)) ⇒
Unaccented

• Else If(Current Open SQ) ⇒ Unaccented

• Else If(Current Open WHADJP) ⇒ Unaccented

• Else If((¬Current Close PP)∧(Current Close SBAR)) ⇒ Accented

• Else If((Last Breath)∧(Next Word POS ∈ <AUX, MD>)) ⇒ Accented

• Else If((Next Word POS ∈ <EX,IN,PRP,TO,VBP,VBZ,WP>)∧ (Cur-

rent Word POS ∈ <DT,MD>)∧ (Last Word POS ∈ <NULL,AUX,

CC,CD,IN,JJ,NN,NNS,RB,TO,VB,VBG,VBZ,WDT>)) ⇒ Accented

• Else If((¬Current Open <CONJP,WHADVP,SQ,WHADJP>)∧
(¬Last Open WHADJP)∧ (Current Word POS ∈ <AUXG,CD,FW,JJ,

JJR,JJS,NN,NNP,NNS,PDT,RB,RBR,RBS,RP,VB,VBD,VBG,VBN,

VBP,VBZ>)) ⇒ Accented

47

• Else If(Current Close UCP) ⇒ Accented

• Else If((Next Word POS = “CC”)∧(¬Current Close PP)) ⇒ Accented

• Else Unaccented

The tree generated by the univariate QUEST (χ2) can be simplified to a

series of decision rules. Here, the tested word is marked unaccented unless it

matches any of the following conditions:

• Current Word POS ∈ <AUXG, CD, FW, JJ, JJR, JJS, NN, NNP,

NNS, RB, RBR, VB, VBD, VBG, VBN, VBP, VBZ>

• (Current Word POS = “PDT”)∧(Next Word POS ∈AUXG, CD, DT,

FW, JJ, JJR, JJS, MD, NN, NNP, NNS, PDT, PRP$, RB, RBR, RBS,

UH, VB, VBD, VBG, VBN >)

• (Current Word POS ∈ <DT, RBS, RP, UH >)∧(Next Word POS ∈
<AUX, CC, EX, IN, NULL, PRP, RP, TO, VBP, VBZ, WDT, WP,

WP$, WRB>)

Prosodic boundary prediction

The performance of every algorithm on predicting accent follows in Table

5.26.

Table 5.26: Multiple algorithm performance on prosodic boundary prediction
using full Charniak parser data

Learner Training Errors Testing Errors
C4.5 1467 (7.6%) 231 (11.2%)
C4.5 Rules 1872 (9.7%) 231 (11.2%)
SLIPPER 1904 (9.8%) 210 (10.2%)
QUEST Univariate (G2) 2010 (10.4%) 220 (10.6%)
QUEST Univariate (χ2) 2023 (10.5%) 231 (11.2%)
QUEST Linear (G2) 1704 (8.8%) 227 (11.0%)
QUEST Linear (χ2) 1872 (9.7%) 229 (11.1%)
Neural Network 1957 (10.1%) 223 (10.8%)
Naive Bayes 2192 (11.3%) 229 (11.1%)

48

Here, the best performer is SLIPPER, followed closely by the univariate

G2 QUEST learner and the Neural Network learner. The performance of

C4.5’s rule learner is also fairly good, and has the advantage of being rel-

atively legible. The confusion matrices for all of these learners is shown in

Tables 5.27-5.30.

Table 5.27: Confusion matrix for SLIPPER on prosodic boundary prediction,
data set 3

Marked Boundary Marked Nonboundary
Actually Boundary 219 176
Actually Nonboundary 55 1618

Table 5.28: Confusion matrix for Neural Network on prosodic boundary pre-
diction, data set 3

Marked Boundary Marked Nonboundary
Actually Boundary 205 190
Actually Nonboundary 33 1640

Table 5.29: Confusion matrix for QUEST Univariate G2 test on prosodic
boundary prediction, data set 3

Marked Boundary Marked Nonboundary
Actually Boundary 211 184
Actually Nonboundary 36 1637

Table 5.30: Confusion matrix for C45 rules on prosodic boundary prediction,
data set 3

Marked Boundary Marked Nonboundary
Actually Boundary 219 176
Actually Nonboundary 55 1618

The boosted ruleset provided by SLIPPER is too complicated to be re-

ally understood, but the decision tree created by the univariate G2 QUEST

(Figure 5.3) has reasonable performance and is easier to study.

The C4.5 rule generator also has legible output that might provide insight

into the relation between syntax and prosodic boundaries. Here, by default

a test case is classified as not being a boundary unless it satisfies any of the

following conditions, listed in descending order of accuracy:

49

Last Close Number

Current Word POS

< 2

Last Word POS

∈ S1

Last Word POS

∈ S2

�

Boundary

123
137

∈ S5

Last Open Number

/∈ S5

Current Open Sbar

< 1

�

Boundary

74
112

Y

�

∅
805
1336

N

�

∅
464
625

≥ 1

�

∅
1968
2208

/∈ S2

Last Word POS

/∈ S1

Current Breath

∈ S3

�

Boundary

128
137

Y

�

∅
3824
4373

N

�

∅
8007
8134

/∈ S3

Current Open Breath

≥ 2

�

Boundary

1347
1394

Y

Current Word POS

N

	

Boundary

431
669

∈ S4

∅
163
218

/∈ S4

Set Contains Does not contain
S1 AUX, CC, EX, IN, MD, NNP, TO, WDT,

WP, WP$, WRB
AUXG, CD, DT, FW, JJ, JJR, JJS, NN, NNS,
PDT, PRP, PRP$, RB, RBR, RBS, RP, UH, VB,
VBD, VBG, VBN, VBP, VBZ

S2 JJ, JJS, NN, NNS, NULL, RBR, RBS,
VB

AUX, AUXG, CC, CD, DT, EX, IN, JJR, MD,
NNP, PRP, PRP$, RB, RP, TO, VBD, VBG, VBN,
VBP, VBZ, WDT, WP, WRB

S3 NN, NNP, NNS, NULL, PDT, RB, RBR,
RP, VB, VBD, VBN, VBP, VBZ

AUX, AUXG, CC, CD, DT, EX, FW, IN, JJ, JJR,
JJS, MD, PRP, PRP$, RBS, TO, VBG, WDT, WP,
WP$, WRB

S4 AUX, CC, DT, IN, MD, PRP, PRP$, RB,
RP, TO, VBD, VBG, VBN, VBZ, WDT,
WP, WRB

CD, EX, JJ, JJR, NN, NNP, NNS, RBR, VB, VBP

S5 NULL, RBS JJ, JJS, NN, NNS, RBR, VB

Figure 5.3: Prosodic boundary prediction tree on dataset 3. The numerator
indicates the number of examples in the training set correctly labeled; the
denominator indicates overall number of examples.

50

• Current Breath

• (Next Word POS ∈ <NNP,VBP>)∧ (Last Word POS = “JJ”)∧ (Cur-

rent Close NP) ∧(¬Current Close PP)∧(¬Current Close VP)

• (Last Close PP)∧(¬Last Close NP)

• (¬Current Open ADJP)∧(Current Word POS ∈ <CC, JJR, PRP$>)

∧(Last Close Number > 0)∧(Last Word POS ∈ <CD, JJ, JJR, JJS,

NN, NNP, NNS, PDT, RB, RBR, RBS, RP, VB, VBD, VBG, VBN,

VBP, VBZ>)

• (¬Current Open ADVP)∧(¬Current Close NP)∧(Last Close NP) ∧(Current

Word POS ∈ <AUX, CC, CD, DT, IN, MD, NNS, PRP, RB, TO, VBD,

VBG, VBN, VBP, VBZ, WDT, WRB>)

• (Current Open WHADVP)∧(Last Word POS ∈ <CD, JJ, JJR, JJS,

NN, NNP, NNS, VB, VBG, VBN, VBP>)

• (¬Last Breath)∧(Current Open WHNP) ∧ (Next Word POS ∈ <AUX,

MD, NN, PRP, PRP$, RB, VBD, VBP, VBZ, WRB>) ∧ (Last Word

POS ∈ <CD, JJ, JJR, JJS, NN, NNP, NNS, PDT, RB, RBR, RBS,

RP, VB, VBD, VBG, VBN, VBP, VBZ>)

• Current Open CONJP

• (Two Back Word ∈ <CD, JJ, JJR, NN, NNP, NNS, PRP$, RB, VBN>)

∧ (¬Current Open ADJP) ∧ (¬Current Close NP) ∧ (¬Last Open NP)

∧ (¬Current Open WHNP) ∧ (¬Current Close PP) ∧ (¬Last Open

PP) ∧ (¬Last Open VP) ∧ (¬Last Breath) ∧ (Current Word POS ∈
<AUX, CC, DT, EX, IN, JJS, MD, PRP, PRP$, RB, TO, VBD, VBG,

VBN, VBZ, WRB>) ∧ (Last Word POS ∈ <JJ, JJS, NN, NNP, NNS,

RBR>)

• (Last Open Numer = 0)∧(Next Word POS ∈ <CC, NNP, VB>)∧
(Current Word POS ∈ <DT, JJ, JJR, NNP, TO>) ∧ (Last Word POS

= “NN”) ∧ (¬Current Open SBAR) ∧ (¬Current Close VP)

• (Two Back Word POS ∈ <DT, RB>)∧(Current Open SBAR) ∧
(¬Current Open WHNP)

51

CHAPTER 6

ANALYSIS

This chapter will include a summary and discussion of the results and the

human legible learning structures. This chapter will be divided into a section

discussing the prediction of accent and a section discussing the prediction of

prosodic boundaries. In general, prosodic boundary prediction performs bet-

ter than accent prediction with around 90% accuracy compared to around

82.5%. When compared to baseline performance, the accent prediction ap-

pears to be superior with 57.4% baseline for accent prediction compared to

80.9% for prosodic boundary prediction.

6.1 Accent Prediction

For accent prediction, the most important factor was always the part of

speech of the word. Significant improvement could be achieved by allowing

the part of speech from the word immediately before to influence the decision

on certain part of speech tags that were fairly ambiguous about indicating

accent. This could be seen on data set 1 where the data sets that C4.5 and

SLIPPER had access to were specifically designed to highlight relevant infor-

mation by manipulating which part of speech tags were seen. As reported in

Table 6.1, the part of speech of the word can accurately predict the presence

of accent about 80% of the time. Including the part of speech information

from the word immediately before increases the accuracy to a little under

82% by removing uncertainty with added contextual information.

Investigating the results from C4.5 with a window of the present part of

speech and that of the word before, certain relationships can be observed.

The decision tree cannot be put in a very compact visual form, and even a

52

Table 6.1: C4.5 performance on Stress prediction using Roth POS informa-
tion

Configuration Training Errors Testing Errors

(wi) 3922 (20.6%) 417 (20.2%)

(wi−1, wi) 3529 (18.2%) 378 (18.3%)

(wi−1, wi, wi+1) 3424 (17.7%) 376 (18.2%)

(wi−2, wi−1, wi) 3369 (17.4%) 379 (18.3%)

plain text condensed version takes well over a page, so it is not reproduced

in this thesis. Observations could still be made from the full tree, and are

given below.

For example, a modal verb is not normally accented, but if one occurs

right after a conjuction, the word to, or an existential there, it is accented.

Thus, the was is predicted to be accented in the utterance “There was a

party.”

It can also be noted that the majority of words following an existential

there are predicted to be accented. This makes sense intuitively since the

existential there is defined as an unaccented there, triggering inversion. The

two exceptions to this rule are the participles and possesive form of wh- pro-

nouns. Likewise, any word other than a possesive wh- pronoun is predicted

to be accented following a conjunction.

The various forms of nouns and adjectives, including gerunds which are

considered nouns, are nearly always accented. Verbs and adverbs have the

presence of accent determined by the context, although in general more are

accented than unaccented.

Another observation that can be made about the C4.5 tree learner is the

disparity between training and testing performance for the cases including

part of speech information other than that in the target word and the one

before. This indicates overtraining, which should be reduced by the conver-

sion into rule based form. This was in fact seen, since the rule output had

a more consistent error rate between the train and test sets for the various

configurations. Here, the best performance on the test set was achieved using

a three-word window with the part of speech information on the target word,

the next word, and the prior word.

53

As before, words that are not nouns, adjectives, verbs, and adverbs (in

the general sense) tend to be unaccented. This matches previously published

observations since the other words are connecting words and therefore less

important for sentence comprehension. The various noun forms and most

adjectives are always accented, with the verb and adverbs depending on

context. Verbs appear to be accented if licensed by the structure of the verb

phrase they are in.

The output of SLIPPER is simpler than that of C4.5, with the common

thread that words that are not nouns, adjectives, verbs, or adverbs tend

not to be accented. This agrees with the content/function distinction with

the words that are not in those four categories nearly always being function

words. The output of SLIPPER also more clearly illustrates that, of those

four categories, verbs have a higher tendency to be unaccented, with verbs

following past participles and comparative adjectives generally unaccented.

Expanding the window as in data sets 2 and 3, it is possible to see if

full syntactic information (or a combined subset of syntactic information)

increases performance. The main difference between the two data sets was

whether or not syntactic categories were combined. There should also be a

performance change due to the use of a different syntactic parser, which will

cause the part of speech information to be different. By including all of the

syntactic information, including syntactic phrase closings, it will be possi-

ble to test if Hirschberg was right about syntactic information not affecting

performance or if their study was too limited.

Using the smaller attribute set, the performance for all learners hovers

around 82.5%. The exceptions to this are the naive Bayesian learner which

performs significantly worse than the others at under 79% and the neural

network learner which works a little better at 83%.

The tree produced by C4.5 significantly overfits the data, since its per-

formance on the training data is significantly different than its performance

on the test set. Ignoring the linear QUEST models (which perform no better

than the univariate models despite their reduced legibility), it can be seen

that the C4.5 Rule learner, the univariate χ2 QUEST, and neural network

learner have similar confusion matrices with around 1070 of the accented

cases marked correctly (about 90%) with differences in the number of unac-

cented words incorrectly marked.

Here, the usage of syntactic information varies between the Univariate χ2

54

QUEST tree learner and the C4.5 Rule learner. The tree built by QUEST

only uses part of speech information from the actual word and the next word.

Here, most noun, adjective, verb, and adverb forms are always accented. The

part of speech classes that have their accent determined by the next word

are the determiners, predeterminers, participle, interjection, and superlative

adverbs. This means that these classes of words are sometimes accented for

emphasis, probably indicating the importance of the coming word.

The C4.5 rule learner was fairly similar by performance, but it used syn-

tactic cues other than the part of speech. For example, the word starting

“wh-” phrases was unaccented if the phrase was prominent (as indicated by

more than three syntactic phrase openings) but accented if the word did not

match any of the other rules. Another example where syntax made signifi-

cant changes is where the current word is a pronoun, “wh-” word, or a small

handful of connecting words. These are generally unaccented unless they are

at the close of a sentence (or sentence fragment) or a prepositional phrase.

This implies that these parts of speech tend not to be accented unless they

conclude a major thought unit.

Expanding the search to include every possible syntactic clause, as in data

set 3, has the potential to cause mixed results. This is because it can refine

the discovered relationships by finding more specific patterns, but it can

also hide them by taking similar syntactic clauses and reducing the apparent

effect on accentuation by reducing the number of observations. Looking at

the results, it appears that the expanded syntax has very little effect on

the accent prediction. This suggests that the syntactic information other

than part of speech has very little relevance for prediction of accent, as the

literature suggested.

On this data set, once again the univariate χ2 QUEST tree ignores ev-

erything but the part of speech of the current word and the next word. The

tree does not contain a single change from the one generated with data set

2. This suggests that any impact of the other aspects of syntax is minor in

predicting accent, and even allowing the data to be as specific as possible

there are no places where QUEST finds an information gain.

The results from C4.5 Rules are a little trickier to look at, since they

are set up in the following structure: Let U denote the set of all rules indi-

cating the word is unaccented and A indicate the rules indicating the word

is accented. If an example fulfills the conditions of any rule in A without

55

fulfilling the conditions of any rule contained in U , it is accented. Otherwise,

it is unaccented. It is clear, however, that it follows the trend of having

nouns, adjectives, verbs, and adverbs accented with some of the connecting

words accented in the proper context. The rules from the composite ruleset

for data set 3 are listed in Appendix E with statistics on how often each rule

is used and how often it is correct.

6.2 Prosodic Boundary Prediction

As in accent prediction, the first task was to find the effect of the window of

words examined on prosodic boundary prediction. For this limited task, the

syntactic information was pared down to a small number of categories and

only the start of syntactic clauses immediately after the prosodic boundary

were investigated. Here, it was found that on POS information alone, the

best performance would be a window of the two words after and the two

words before. Expanding the window to include more words from before the

boundary resulted in worse performance on the test data yet much better

performance on the training set. This is a sign of overfitting of the data,

which was caused here by too many available categories. Adding in the

small syntactic information caused significant gains for both part of speech

windows tested, with the best performance achieved by adding the syntactic

information to the two word before, two word after window. This raised the

accuracy on test data to 88.9%, though it is likely that the tree would not

perform that well on unseen cases out of this domain since there was a fairly

large disparity in performance on the train and testing data.

Using this configuration in the other learners, it is possible to compare

results, reproduced in Table 6.2. The best performing algorithm was SLIP-

PER (88.5% accuracy) with univariate χ2 QUEST performing slightly poorer

and still being human legible. Looking at the rules for SLIPPER, relations

can be explored. As intuition suggests, if the current word is at the start of

a syntactic sentence, then it immediately follows a prosodic break. Also, a

prepositional phrase starting after a plural noun indicates a prosodic break

in between the words. The other two rules caused by SLIPPER are highly

interrelated. Combining them, a prosodic break is indicated if the current

word is the start of a clause introduced by a subordinating conjunction and

56

is either the start of a prepositional phrase, the word is a coordinating con-

junction, or the word before was a noun (plural or singular). Lastly, it was

possible for the boundary to exist if the current word is a conjunction that

is after a noun and not the start of a prepositional phrase. Looking at this

more carefully, it looks like a clause that was introduced by a subordinating

conjunction almost always has a prosodic boundary in between the clauses.

The high correlation between the start of either a declarative clause or a

clause introduced by a conjunction and prosodic boundary shows a strong

relation between prosodic boundaries and syntactic boundaries.

Table 6.2: Mutltiple algorithm performance on prosodic boundary prediction
using Roth POS and partial Charniak SYN information

Learner Training Errors Testing Errors
C4.5 Rules 2193 (11.3%) 251 (12.1%)
SLIPPER 2212 (11.4%) 237 (11.5%)
QUEST Univariate (G2) 2098 (10.8%) 246 (12.1%)
QUEST Univariate (χ2) 2086 (10.8%) 247 (11.9%)
QUEST Linear (G2) 2065 (10.7%) 243 (11.7%)
QUEST Linear (χ2) 2165 (11.2%) 244 (11.7%)

The output of the QUEST tree, reproduced below in Figure 6.1, gives

indication of order of importance of attributes. The top two nodes are ba-

sically interchangeable, since no matter what happens, being immediately

after a breath indicates it is just after a prosodic boundary. After this, the

next most important attribute is the part of speech of the word before the

potential boundary. If the part of speech is a noun, possesive noun, plural

noun, interjection, or past participle verb, it is possible for it to be immmedi-

ately before a prosodic boundary. If the part of speech immediately after the

potential boundary is a pronoun, a “wh-” word, or a superlative adjective,

then the part of speech of the word two before the potential boundary is the

only other thing that counts. Otherwise, there are more restrictions based

on the part of speech of all four words in the window.

Switching to the part of speech tags from the Charniak parser and us-

ing the combined syntactic clause level information provides a slight gain in

overall performance. The neural network learner has the best overall per-

formance which, although useful for expanding the results to future corpora

57

Last Word POS

Breath

∈ S1

�

Boundary

T

Current Word POS

F

Two Back Word POS

∈ S2

Current Word POS

∈ S3

�

Boundary

∈ S4

Next Word POS

/∈ S4

Last Word POS

∈ S5

Current Word POS

∈ S6

�

Boundary

∈ S7

�

NULL

/∈ S7

�

NULL

/∈ S6

�

NULL

/∈ S5

�

NULL

/∈ S3

�

NULL

/∈ S2

Breath

/∈ S1

�

Boundary

T

	

NULL

F

Set Contains Does not contain
S1 NN, NNP, NNS, UH, VBN CC, CD, DT, EX, FW, IN, JJ, JJR, JJS, MD,

NULL, PDT, PP$, PRP, RB, RBR, RBS, RP,
TO, VB, VBD, VBG, VBP, VBZ, WDT, WP,
WP$, WRB

S2 CC, DT, IN, JJR, JJS, MD, PP$, PRP, RB,
TO, VBD, VBG, VBN, VBP, VBZ, WDT,
WP, WP$, WRB

CD, EX, JJ, NN, NNP, NNS, PDT, RBR,
RBS, RP, VB

S3 CD, FW, JJ, JJR, NN, PP$, TO, VBN, WDT CC, DT, IN, JJS, NNS, PDT, PRP, RB, RBR,
RP, VB, VBD, VBG, VBP, VBZ, WP, WP$,
WRB

S4 JJS, PP$, PRP, WDT, WP, WRB CC, DT, IN, JJR, MD, RB, TO, VBD, VBG,
VBN, VBP, VBZ, WP$

S5 CD, JJ, JJR, PP$, PRP, RB, RBR, TO, VB,
VBG, VBN, WP, WRB

CC, DT, EX, IN, MD, NN, NNS, PDT, VBD,
VBP, VBZ, WDT

S6 NN, NNS, UH VBN
S7 CC, IN, MD, RB, TO, VBG, VBN, VBP DT, VBD, VBZ

Figure 6.1: Decision tree for predicting prosodic boundaries on the first data
set using the univariate χ2 QUEST tree builder.

58

and for incorporating auditory information into the prediction, is not useful

for understanding purposes. In this case, the output generated by SLIPPER

is not convertible to an easily understood form, but fortunately the best per-

forming learner other than the neural network was the univariate G2 QUEST

with 89.4% correctness for QUEST and 89.6% for the neural network. It is

interesting to note that the confusion matrices between the various tests are

very similar, suggesting that they all make the same mistakes.

For the output tree of univariate G2 QUEST reproduced below in Figure

6.2, the most important attribute is the number of syntactic clauses that are

terminated immediately before the potential boundary. If there are two or

more, and there are at least two levels of syntactic clauses starting immedi-

ately after the potential boundary, it is a prosodic boundary 95% of the time

based on 1482 cases in the training set, representing 37% of the prosodic

boundaries in the training set. If the number of syntactic phrases starting

is less than two, the next important distinction is the part of speech of the

word following the boundary. About half of the potential parts of speech

for the word following the boundary were found in the training set, but it is

clear that if the part of speech is not a noun or adjective then it is possible

to be after a boundary. If the part of speech is not a noun or adjective, and

the word does not mark the closing of a verb phrase, then roughly 66% of

the time it is immediately after a prosodic boundary. Altogether, just under

half of the prosodic breaks are associated with two or more syntactic clauses

terminating immediately before.

If the number of syntactic phrase closings is less than two, the next split

made is on the part of speech of the current word. This split does not lead

to significant change further down the tree, since the next node in both cases

tests for the part of speech of the last word and does not have much difference

between the two decision sets. In both cases, if the word immediately before

was “NULL” (which happens if it is the start of a transcription) it signaled

a prosodic boundary. Otherwise, if the last word was a superlative adverb,

the part of speech of the current word matters. In this case, it is necessary

that the part of speech on the current word be a “wh-” word or a connecting

word such as a conjunction. The relative lack of prosodic boundaries that

are not nestled between the end of one set of syntactic clauses and the start

of the next compared to how many of them occur between clauses suggests

that this is the most important attribute attainable through textual analysis.

59

Last Close Number

Current Word POS

< 2

Last Word POS

∈ S1

�

Boundary

123
137

∈ S2

�

NULL
3275
4282

/∈ S2

Last Word POS

/∈ S1

�

Boundary

128
137

∈ S3

�

NULL
11831
12507

/∈ S3

Current Open Number

≥ 2

Current Word POS

< 2

Current Close VP

∈ S4

�

Boundary

397
614

T

�

NULL
16
16

F

�

NULL
134
169

/∈ S4

�

Boundary

1401
1482

≥ 2

Set Contains Does not contain
S1 AUX, CC, EX, IN, MD, NNP, TO, WDT,

WP, WP$, WRB
AUXG, CD, DT, FW, JJ, JJR, JJS, NN, NNS,
PDT, PRP, PRP$, RB, RBR, RBS, RP, UH, VB,
VBD, VBG, VBN, VBP, VBZ

S2 NULL, RBS AUX, AUXG, CC, CD, DT, EX, IN, JJ, JJR, JJS,
MD, NN, NNP, NNS, PRP, PRP$, RB, RBR, RP,
TO, VB, VB, VBD, VBG, VBN, VBP, VBZ, WDT,
WP, WRB

S3 NULL AUX, AUXG, CC, CD, DT, EX, FW, IN, JJ, JJR,
JJS, MD, NN, NNP, NNS, PDT, PRP, PRP$, RB,
RBR, RBS, RP, TO, VB, VBD, VBG, VBN, VBP,
VBZ WDT, WP, WP$, WRB

S4 AUX, CC, DT, IN, MD, PRP, PRP$, RB,
RP, TO, VBD, VBG, VBN, VBP, VBZ

CD, EX, JJ, JJR, NN, NNP, NNS, RBR, VB

Figure 6.2: Prosodic boundary prediction tree on dataset 2. The numerator
indicates the number of examples in the training set correctly labeled; the
denominator indicates overall number of examples.

60

This is an important find, since it indicates a direct dependence of prosodic

boundaries on syntactic boundaries.

Making distinctions between every member of the syntactic set produced

by the Charniak parser produced very similar results with gains made by

some learners (most notably SLIPPER) and some with losses (most notably

linear G2 QUEST). Since the performance basically stayed the same, these

might provide more details into subtleties of the labeling, but indicate that

some amount of intelligent combination of variables is needed to optimize

performance.

Looking at the univariate G2 QUEST tree, reproduced in Figure 6.3

(which has the same performance on the test set as the one formed on data

set 2), the top level is the same with a branch depending on how many syn-

tactic clauses terminated just before the boundary. If there are at least two

syntactic clauses ending immediately before the start of a sentence, there

is a prosodic boundary 97% of the time on about 1400 of the words in the

training set, which acounts for about 35% of the total prosodic boundaries.

If there are at least two syntactic clauses ending and the next word does not

start a new sentence, it is marked immediately postboundary if it is not a

noun, adjective, or base form of a verb.

If there are fewer than two syntactic phrase closings immediately before

the potential boundary, the part of speech of the word immediately after the

boundary has the highest bearing. Next in importance is the part of speech

of the previous word. Depending on the split from the current word, the

potential boundary can be labeled at this level alone. If it cannot, then the

label is determined either by whether it is at the start of a sentence or if it

is the start of a clause introduced by a conjunction that is not immediately

after another syntactic clause’s start.

Most of the rules generated by C4.5 rules are too detailed to readily

comprehend, but some general observations can be made. For example, the

start of a sentence again marks a prosodic boundary. The start of a multiword

coordinating conjunction is a marker, as is following the end of a prepositional

phrase that is not simultaneously the end of a noun phrase. The rest of the

rules start being complex, but a general trend is for syntactic clauses ending

on the word before or starting on the word after a potential boundary.

61

Last Close Number

Current Word POS

< 2

Last Word POS

∈ S1

Last Word POS

∈ S2

�

Boundary

123
137

∈ S5

Last Open Number

/∈ S5

Current Open Sbar

< 1

�

Boundary

74
112

Y

�

∅
805
1336

N

�

∅
464
625

≥ 1

�

∅
1968
2208

/∈ S2

Last Word POS

/∈ S1

Current Breath

∈ S3

�

Boundary

128
137

Y

�

∅
3824
4373

N

�

∅
8007
8134

/∈ S3

Current Open Breath

≥ 2

�

Boundary

1347
1394

Y

Current Word POS

N

	

Boundary

431
669

∈ S4

∅
163
218

/∈ S4

Set Contains Does not contain
S1 AUX, CC, EX, IN, MD, NNP, TO, WDT,

WP, WP$, WRB
AUXG, CD, DT, FW, JJ, JJR, JJS, NN, NNS,
PDT, PRP, PRP$, RB, RBR, RBS, RP, UH, VB,
VBD, VBG, VBN, VBP, VBZ

S2 JJ, JJS, NN, NNS, NULL, RBR, RBS,
VB

AUX, AUXG, CC, CD, DT, EX, IN, JJR, MD,
NNP, PRP, PRP$, RB, RP, TO, VBD, VBG, VBN,
VBP, VBZ, WDT, WP, WRB

S3 NN, NNP, NNS, NULL, PDT, RB, RBR,
RP, VB, VBD, VBN, VBP, VBZ

AUX, AUXG, CC, CD, DT, EX, FW, IN, JJ, JJR,
JJS, MD, PRP, PRP$, RBS, TO, VBG, WDT, WP,
WP$, WRB

S4 AUX, CC, DT, IN, MD, PRP, PRP$, RB,
RP, TO, VBD, VBG, VBN, VBZ, WDT,
WP, WRB

CD, EX, JJ, JJR, NN, NNP, NNS, RBR, VB, VBP

S5 NULL, RBS JJ, JJS, NN, NNS, RBR, VB

Figure 6.3: Prosodic boundary prediction tree on dataset 3. The numerator
indicates the number of examples in the training set correctly labeled; the
denominator indicates overall number of examples.

62

6.3 Summary

Overall, use of part of speech information alone is sufficient to achieve fairly

high accuracy on predicting word accentuation. It appears that no additional

syntactic information plays a significant role in accent prediction, suggesting

that any further improvements in prediction would need acoustic informa-

tion. Strangely, it seems that despite the fact that part of speech is by far

the most influential attribute in determining the accent from text sources,

it performs better when the part of speech information is obtained as part

of a full syntactic parse of a sentence. Prosodic boundary prediction clearly

needs syntactic information, but it is unclear at what level of distinction the

syntactic information gets fractured too much to be useful. Including infor-

mation of how many levels of syntactic clause start and end on words seems

to be fairly effective at solving this dilemna, but more investigation is needed

to see if syntactic clauses that indicate similar phenomena syntactically can

be grouped together for better performance on prosodic problems.

These results indicate a direct connection between prosodic boundaries

and syntactic boundaries. These results also indicate that a neural network

learner can achieve results similar to if not better than those given by tree

learners. Neural networks have the benefit of being easier to retrain on new

domains with less available training information, and can also incorporate

auditory information without much modification to the learner.

Tags were made without the benefit of punctuation marks, indicating the

parsing can be done without the benefit of significant human intervention on

corpora that have word level transcription but no indicated punctuation.

6.4 Suggestions for Future Work

This work showed high accuracy could be achieved through the use of neu-

ral networks and suggests that careful combinations of syntactic tags may

increase the accuracy or at least cause minimal loss while reducing computa-

tion and training costs. The high accuracy for neural networks is important

since neural networks can be adapted to include acoustic information as well

as the syntactic information. This can also cause increased performance by

including a new set of features that are not as interdependent as the syntac-

tic features. The exact gain caused by inclusion of acoustic information as

63

well as careful clustering of syntactic tags have yet to be examined. Also,

a comparison of various syntactic clustering information to determine which

one is optimal has yet to be investigated.

64

CHAPTER 7

CONCLUSION

This thesis explored the relation between syntax and prosody. This was done

using machine learning methods as described in the text; a description of how

the learning algorithms work was included. Sources of the implementations

used for the algorithms are given in the appendices along with more detailed

information about the syntactic information.

It was found that the presence of stress on a word was determined in

large part by its part of speech, and prosodic boundaries tended to occur at

the same places where there were large syntactic boundaries. It was found

that stress prediction appears to have a ceiling at around 83% accuracy

that cannot be overcome without adding features outside of the domain of

syntax. For the task of predicting stress on transcribed speech to increase

the number of corpora available for prosodic research, acoustic information

would be the first additional feature to study since it appears that methods

based exclusively on text analysis cannot improve the results.

Similar results were found for all tested methods except for naive Bayesian

learning which performed significantly worse in all cases. This was true for

both prosodic boundary and accent prediction.

The human legible learners suggested a strong correspondence between

prosodic boundaries and syntactic boundaries. The neural network learner,

although slower to train, performed slightly better on prosodic boundary

tasks and should be useful in any future work that incorporates direct audi-

tory information into the learner because of the ease of inclusion of this data

and its suitability to adapting to new data using starting positions based on

larger domains.

It was also confirmed that syntactic information other than part of speech

65

plays little role in determining presence of accent in a word, suggesting that

any further improvement in accuracy would require accent prediction to in-

clude acoustic features. This agrees with Hirschberg’s earlier finding that

part of speech is the most important attribute for prediction of accent.

Hirschberg’s finding is modified here by the observation that syntactic in-

formation played a role in some exceptional cases, and therefore increased

accent prediction accuracy slightly. Examples include the start of a “wh-”

phrase coinciding with several syntactic phrases starting, words at the end of

major syntactic phrases, and some of the conditions learned by C4.5 Rules

from the third data set. The slight outperformance of the neural network

learner over the other methods, and the incorporability of acoustic infor-

mation to this model, suggest that further investigation of using a neural

network for accent prediction is warranted.

66

APPENDIX A

COMPOSITION OF DATA
SET 2

Listed in this appendix are the syntactic phrase and part of speech tags

generated by the Charniak parser, their frequency, which syntactic tags are

combined, and the frequency of the combined set on both the training and

testing set. To conserve space, the frequency values are only given for the

current word. There will be a disparity between syntactic clause opening and

closings, since the start or end of multiple syntactic clauses of the same type

are considered to occur only once in this thesis.

Table A.1 shows all of the phrase level syntactic clauses used grouped by

the category used to combine them together. The frequency of each of these

syntactic groups is shown in Table A.2. The frequency of all of the part of

speech tags on the target word is shown in Table A.3.

67

Table A.1: Syntactic label merging

Label Category number

ADJP 1

ADVP 1

CONJP 1

INTJ 1

NP 2

NX 2

PP 3

S 4

SBAR 4

SINV 4

SQ 4

FRAG 4

VP 5

WHADJP 6

WHADVP 6

WHNP 6

Table A.2: Frequency of syntactic groups on Current Word

Training set Testing set

Label Open Close Open Close

1 774 549 91 63

2 5247 2423 561 242

3 2039 1368 214 145

4 3200 848 339 90

5 3713 1476 407 151

6 213 139 24 16

68

Table A.3: Frequency of part of speech tags on Current Word

Label Frequency on training set Frequency on test set

AUX 783 88

AUXG 12 1

CC 583 61

CD 485 53

DT 1870 176

EX 18 3

FW 27 0

IN 2148 227

JJ 1683 208

JJR 96 11

JJS 49 4

MD 270 37

NN 3909 385

NNP 1104 116

NNS 1607 183

PDT 12 0

PRP 401 44

PRP$ 276 25

RB 676 82

RBR 20 4

RBS 16 6

RP 98 12

TO 551 60

UH 2 0

VB 571 74

VBD 290 24

VBG 311 24

VBN 436 60

VBP 240 20

VBZ 585 56

WDT 66 9

WP 81 11

WP$ 5 0

WRB 63 4

69

APPENDIX B

COMPOSITION OF DATA
SET 3

Listed in this appendix are the syntactic phrase and part of speech tags

generated by the Charniak parser, their frequency, which syntactic tags are

present, and the frequency of the tags on both the training and testing set.

To conserve space, the frequency values are only given for the current word.

There will be a disparity between syntactic clause opening and closings, since

the start or end of multiple syntactic clauses of the same type are considered

to occur only once in this thesis.

The frequency of the syntactic clauses is shown in Table B.1. The fre-

quency of all of the part of speech tags on the target word is shown in Table

B.2.

70

Table B.1: Frequency of syntactic groups on Current Word

Training set Testing set

Label Open Close Open Close

ADJP 350 305 38 37

ADVP 414 273 52 32

CONJP 10 9 1 1

FRAG 148 21 14 3

INTJ 1 1 0 0

NP 5245 2422 561 242

NX 2 2 0 0

PP 2039 1368 214 145

PRT 94 78 10 8

QP 106 101 13 11

S 2609 823 279 87

S1 = Breath 1667 0 172 0

SBAR 823 443 91 50

SINV 21 3 0 0

SQ 12 1 2 1

UCP 18 12 1 1

VP 3713 1476 407 151

WHADJP 5 3 1 1

WHADVP 56 31 3 1

WHNP 154 107 20 14

X 3 1 0 0

71

Table B.2: Frequency of part of speech tags on Current Word

Label Frequency on training set Frequency on test set

AUX 783 88

AUXG 12 1

CC 583 61

CD 485 53

DT 1870 176

EX 18 3

FW 27 0

IN 2148 227

JJ 1683 208

JJR 96 11

JJS 49 4

MD 270 37

NN 3909 385

NNP 1104 116

NNS 1607 183

PDT 12 0

PRP 401 44

PRP$ 276 25

RB 676 82

RBR 20 4

RBS 16 6

RP 98 12

TO 551 60

UH 2 0

VB 571 74

VBD 290 24

VBG 311 24

VBN 436 60

VBP 240 20

VBZ 585 56

WDT 66 9

WP 81 11

WP$ 5 0

WRB 63 4

72

APPENDIX C

SOFTWARE SOURCES

The parsers and learning algorithms used in this thesis were all obtained

through freely available implementations. These are listed below.

Roth parser

http://l2r.cs.uiuc.edu/˜cogcomp/software/posreg.html

Charniak parser

ftp://ftp.cs.brown.edu/pub/nlparser/parser.tar.gz

C4.5/C4.5 Rules

http://www.cse.unsw.edu.au/˜quinlan/c4.5r8.tar.gz

Slipper

http://software.cs.rutgers.edu/slipper/slipper license.html

QUEST

http://www.stat.wisc.edu/p/stat/ftp/pub/loh/treeprogs/quest/

WEKA (neural network, naive Bayes)

http://prdownloads.sourceforge.net/weka/weka-3-4.exe

73

APPENDIX D

RAW DATA FROM SEVERAL
LEARNERS

In this appendix, the raw data that was output by some of the better learn-

ers is given for free use to anyone who wishes to build on the results on this

thesis. The best predictors for accent are contained in the body of this thesis,

but are reproduced here.

SLIPPER on prediction of prosodic boundaries, compressed label set. The

categories used are from Table A.1, with the first label for each category

(alphabetically) used to designate the category.
Final hypothesis is:

BOUNDARY :- nextPOS=NNP, CurrentPOS=NNS, TwoBackPOS=IN (+2.43679 : 0.0219308/0.00014203).

BOUNDARY :- TwoBackPOS=NULL, LastPOS=VBD (+2.30277 : 0.00255988/0).

BOUNDARY :- LastCloseNumber≥2, CurrentOpenNumber≥2, CurrentOpenADJP=NULL (+2.26538 :

0.181128/0.00192564).

BOUNDARY :- LastPOS=NULL, CurrentCloseNumber≤1 (+1.90984 : 0.0388489/0.000826863).

BOUNDARY :- TwoBackPOS=PRP$, nextPOS=VBN (+1.90416 : 0.00113922/0).

BOUNDARY :- LastOpenADJP=ADJPopen, LastOpenS=Sopen, CurrentOpenNP=NPopen, CurrentCloseNumber≤1

(+1.8844 : 0.0110439/0.000229641).

BOUNDARY :- LastOpenNumber≥6 (+1.54799 : 0.00123602/3.12269e-05).

BOUNDARY :- LastPOS=NNP, CurrentPOS=DT (+1.34599 : 0.00713138/0.000459029).

BOUNDARY :- LastPOS=NN, CurrentPOS=NNP, nextPOS=NNP, LastOpenNumber≤1, CurrentOpenNP=NULL

(+1.25211 : 0.00917543/0.000726264).

BOUNDARY :- LastPOS=VB, nextPOS=NNS, CurrentOpenNP=NPopen, LastOpenNumber≤1 (+0.875357 :

0.00803262/0.0013735).

BOUNDARY :- CurrentPOS=TO, CurrentOpenS=NULL, LastOpenNumber≤1, LastOpenPP=NULL,

LastOpenVP=NULL, CurrentOpenNumber≥1, LastCloseADJP=NULL, LastOpenS=NULL (+0.868893 :

0.0163393/0.00285293).

BOUNDARY :- CurrentPOS=CC (+0.855906 : 0.0368855/0.00663807).

BOUNDARY :- LastPOS=NULL, CurrentOpenVP=NULL (+0.79746 : 0.0158084/0.00318732).

BOUNDARY :- LastCloseNumber≥3, CurrentOpenNumber≤1, CurrentOpenPP=NULL, CurrentCloseNumber≤1

(+0.79345 : 0.0369846/0.00754496).

BOUNDARY :- CurrentOpenS=Sopen, LastOpenS=NULL, LastCloseNP=NULL, LastOpenPP=NULL, Curren-

tOpenADJP=NULL, CurrentOpenNumber≤4, CurrentCloseNumber≤3, LastOpenNumber≤2, CurrentOpenNumber≤4

(+0.744234 : 0.0819472/0.018477).

BOUNDARY :- LastPOS=VBN, TwoBackPOS=AUX (+0.739446 : 0.0180613/0.00409603).

BOUNDARY :- LastPOS=VB, CurrentOpenS=NULL, CurrentCloseNumber≤1, CurrentOpenADJP=NULL,

LastOpenNumber≤2 (+0.692571 : 0.0297924/0.0074373).

74

BOUNDARY :- CurrentOpenADJP=ADJPopen, CurrentCloseADJP=NULL, LastOpenNumber≤1, Current-

POS=RB, CurrentOpenVP=NULL, CurrentOpenNP=NULL, LastCloseWHADJP=NULL, LastOpenPP=NULL,

LastOpenVP=NULL, LastOpenNP=NULL (+0.680954 : 0.0126604/0.00322401).

BOUNDARY :- LastCloseNumber≥1, LastOpenS=NULL, CurrentCloseNumber≤1, LastOpenPP=NULL,

LastOpenNumber≤2 (+0.671253 : 0.341101/0.0890732).

BOUNDARY :- CurrentOpenWHADJP=WHADJPopen, LastCloseNP=NULL, LastOpenNumber≤3,

LastOpenPP=NULL (+0.60235 : 0.0130701/0.00390009).

BOUNDARY :- LastPOS=VBP (+0.518402 : 0.0164361/0.00581133).

BOUNDARY :- CurrentPOS=IN, LastOpenNumber≤1, CurrentCloseNumber≤0, LastOpenPP=NULL,

LastOpenS=NULL (+0.487145 : 0.10895/0.0411081).

BOUNDARY :- TwoBackPOS=RB, LastOpenNP=NULL, CurrentOpenNumber≥1, LastOpenNumber≤1, Cur-

rentOpenADJP=NULL, CurrentCloseNumber≤3, CurrentOpenWHADJP=NULL, LastOpenS=NULL (+0.469902 :

0.0210256/0.00819906).

BOUNDARY :- CurrentPOS=AUX, LastCloseNumber≥1, CurrentOpenNumber≤1, LastOpenADJP=NULL,

LastCloseNumber≤8, LastOpenVP=NULL, CurrentOpenVP=VPopen, LastOpenNumber≤3, CurrentCloseNP=NULL,

LastOpenNumber≤3 (+0.467684 : 0.0357708/0.0140223).

BOUNDARY :- TwoBackPOS=NNP, LastOpenNumber≤1, CurrentCloseNumber≤1, LastOpenADJP=NULL,

LastOpenNP=NULL, LastOpenPP=NULL (+0.440029 : 0.0435421/0.0180443).

BOUNDARY :- CurrentOpenPP=PPopen, LastCloseNumber≤0, CurrentOpenS=NULL, LastOpenPP=NULL,

CurrentCloseNumber≤1 (+0.431904 : 0.0360772/0.0151935).

BOUNDARY :- LastCloseNumber≥6 (+0.428116 : 0.0259447/0.0110054).

BOUNDARY :- LastPOS=VBZ, LastCloseNumber≤0 (+0.399829 : 0.0309206/0.013884).

BOUNDARY :- LastPOS=VBG (+0.39241 : 0.0140969/0.00641696).

BOUNDARY :- LastPOS=NNS, CurrentOpenNumber≥1, CurrentCloseNumber≤2, LastOpenNumber≤4 (+0.382046 :

0.0708189/0.0329706).

BOUNDARY :- LastOpenVP=VPopen, CurrentOpenNP=NPopen, CurrentOpenS=NULL, LastOpenNumber≤2

(+0.375905 : 0.050281/0.0236945).

BOUNDARY :- LastOpenADJP=ADJPopen, CurrentOpenVP=NULL (+0.360565 : 0.0265872/0.0129135).

BOUNDARY :- LastPOS=NNP, CurrentCloseNumber≤1 (+0.336799 : 0.0436956/0.0222664).

BOUNDARY :- LastPOS=JJ, CurrentCloseNumber≤2, LastOpenNumber≤2, LastOpenPP=NULL, Current-

CloseADJP=NULL (+0.33188 : 0.0412484/0.0212267).

BOUNDARY :- LastPOS=NN, CurrentCloseNumber≤0 (+0.330754 : 0.146595/0.0756411).

BOUNDARY :- TwoBackPOS=NULL (+0.31801 : 0.0211763/0.0111985).

BOUNDARY :- LastPOS=NNS, CurrentCloseNumber≤2 (+0.235313 : 0.0789482/0.0493023).

BOUNDARY :- LastPOS=NN, CurrentCloseNumber≤1, CurrentOpenPP=NULL (+0.209895 : 0.123245/0.0809859).

BOUNDARY :- CurrentOpenNumber≥3 (+0.186287 : 0.0638136/0.0439569).

BOUNDARY :- LastCloseNumber≥1, CurrentCloseNumber≤1, LastOpenWHADJP=NULL, LastClosePP=NULL

(+0.152419 : 0.23961/0.176644).

BOUNDARY :- LastPOS=NN, CurrentOpenNumber≥1 (+0.129358 : 0.131233/0.101311).

BOUNDARY :- LastCloseNumber≥1 (+0.0818133 : 0.28295/0.240237).

BOUNDARY (+7.25076e-05 : 0.500021/0.499948).

default NULL (-2.15387 : 0.0108156/0.805197).

resolution=best.

=============================== summary ===============================

Train error rate: 10.08% +/- 0.22% (19344 datapoints) <<

Test error rate: 10.83% +/- 0.68% (2068 datapoints) <<

Hypothesis size: 43 rules, 193 conditions

Learning time: 218.14 sec

Univariate G2 QUEST on accent prediction, compressed label set.

Unaccented unless follows any of the following rules:

• Current Word POS ∈ <AUXG, CD, FW, JJ, JJR, JJS, NN, NNP,

NNS, RB, RBR, VB, VBD, VBG, VBN, VBP, VBZ>

• (Current Word POS = “PDT”) ∧(Next Word POS /∈ <AUX, CC, EX,

IN, NULL, RP, TO, VBP, VBZ, WDT, WP, WP$, WRB >)

• (Current Word POS ∈ <DT, RBS, RP, UH>) ∧ (Next Word POS ∈
<AUX, CC, EX, IN, NULL, PRP, RP, TO, VBP, VBZ, WDT, WP,

WP$, WRB>)

75

SLIPPER on prediction of prosodic boundaries, full label set.
Final hypothesis is:

BOUNDARY :- nextPOS=NNP, LastPOS=JJ, TwoBackPOS=IN, CurrentCloseNumber≤2, CurrentCloseNumber≥2

(+3.08665 : 0.0223039/2.06951e-05).

BOUNDARY :- LastCloseADJP=ADJPclose, CurrentOpenS=Sopen (+2.45827 : 0.00350317/0).

BOUNDARY :- CurrentOpenS1=S1open (+2.26773 : 0.211914/0.00224658).

BOUNDARY :- TwoBackPOS=PRP$, nextPOS=VBN (+1.97967 : 0.00132917/0).

BOUNDARY :- CurrentOpenCONJP=CONJPopen (+1.7418 : 0.0014672/1.99834e-05).

BOUNDARY :- LastOpenNumber≥6 (+1.58154 : 0.00129679/3.00932e-05).

BOUNDARY :- LastOpenADVP=ADVPopen, CurrentOpenVP=NULL, LastCloseNumber≥1, LastCloseWHNP=NULL,

CurrentOpenNumber≥1, CurrentCloseNumber≤1 (+1.19126 : 0.017867/0.00162597).

BOUNDARY :- LastPOS=VBP, CurrentOpenSBAR=NULL, LastOpenNumber≤1, CurrentOpenVP=NULL,

CurrentOpenS=NULL, CurrentOpenPP=NULL, CurrentOpenPRT=NULL, CurrentOpenUCP=NULL,

CurrentCloseNumber≤1 (+1.07445 : 0.00889104/0.00101398).

BOUNDARY :- CurrentOpenWHADVP=WHADVPopen, LastOpenFRAG=NULL, LastClosePP=NULL,

LastOpenPP=NULL, LastCloseNumber≤11 (+1.00689 : 0.00396935/0.000507444).

BOUNDARY :- LastOpenADJP=ADJPopen, CurrentOpenNumber≥1, CurrentOpenSBAR=NULL, Curren-

tOpenVP=NULL, LastOpenUCP=NULL, CurrentOpenADVP=NULL, CurrentOpenQP=NULL, LastOpenS1=NULL

(+0.915599 : 0.00925234/0.00146072).

BOUNDARY :- CurrentOpenADVP=ADVPopen, LastCloseNumber≤4, LastOpenNumber≤1, LastOpenVP=NULL,

CurrentCloseNumber≤4, LastOpenADJP=NULL (+0.864433 : 0.0127487/0.00224146).

BOUNDARY :- CurrentOpenSBAR=SBARopen, LastOpenS1=NULL, LastCloseNumber≤13, LastOpenPP=NULL,

CurrentOpenNumber≤4, CurrentOpenADVP=NULL (+0.858787 : 0.0667558/0.0119615).

BOUNDARY :- CurrentPOS=CC (+0.843376 : 0.0376657/0.00695161).

BOUNDARY :- LastPOS=VBN, TwoBackPOS=AUX, CurrentOpenPRT=NULL, CurrentCloseNP=NULL (+0.794997 :

0.0184637/0.00374466).

BOUNDARY :- LastCloseNumber≥1, LastOpenNumber≤1, CurrentCloseNumber≤1, CurrentOpenADVP=NULL,

LastOpenADVP=NULL, LastCloseNumber≤13, LastOpenPRT=NULL, CurrentOpenNumber≤5, LastOpenPP=NULL

(+0.790325 : 0.311143/0.0640254).

BOUNDARY :- CurrentPOS=TO, nextPOS=VB, CurrentOpenSBAR=NULL, LastOpenS=NULL (+0.783134 :

0.0193065/0.0040112).

BOUNDARY :- LastPOS=VB, CurrentCloseNumber≤1, LastOpenNumber≤1, CurrentOpenPRT=NULL, CurrentOpe-

nADJP=NULL, CurrentOpenS=NULL (+0.6797 : 0.029474/0.00755015).

BOUNDARY :- LastCloseNumber≥1, CurrentPOS=PRP (+0.673281 : 0.00931924/0.00240512).

BOUNDARY :- CurrentPOS=NNP, CurrentCloseNumber≤0, LastCloseNumber≤1, LastOpenNP=NULL, Curren-

tOpenS=NULL, CurrentOpenVP=NULL (+0.640749 : 0.0177131/0.00489886).

BOUNDARY :- LastPOS=RP (+0.611947 : 0.00654625/0.00190689).

BOUNDARY :- LastCloseNumber≥2, CurrentCloseNumber≤0 (+0.540832 : 0.079309/0.0268711).

BOUNDARY :- LastPOS=NULL (+0.511557 : 0.0138594/0.00496553).

BOUNDARY :- LastCloseNumber≥1, LastOpenNumber≥2, CurrentOpenS=NULL, LastOpenS1=NULL,

LastOpenNumber≤3, CurrentOpenADVP=NULL, CurrentCloseS=NULL (+0.491849 : 0.0435559/0.0162705).

BOUNDARY :- TwoBackPOS=RB, LastOpenNP=NULL, LastOpenNumber≤1, CurrentOpenNumber≥1,

LastCloseNumber≤0, CurrentCloseNumber≤3, CurrentOpenADJP=NULL, CurrentOpenPRT=NULL, CurrentOpe-

nADVP=NULL, CurrentOpenSQ=NULL, CurrentOpenWHADJP=NULL, LastOpenSBAR=NULL (+0.490792 :

0.0159438/0.00595825).

BOUNDARY :- TwoBackPOS=NNP, LastOpenNumber≤1, CurrentCloseNumber≤1, LastOpenNP=NULL,

LastOpenPP=NULL, CurrentOpenADJP=NULL, LastOpenADVP=NULL, CurrentOpenNumber≤4, CurrentOpen-

PRT=NULL, CurrentOpenQP=NULL (+0.487957 : 0.0451664/0.0170047).

BOUNDARY :- nextPOS=VBG, LastOpenNumber≤2, CurrentOpenS=NULL, CurrentCloseNumber≤2 (+0.477839 :

0.0142409/0.00546044).

BOUNDARY :- LastPOS=VBZ, LastCloseVP=NULL (+0.447843 : 0.0332252/0.0135515).

BOUNDARY :- CurrentOpenPP=PPopen, LastOpenNumber≤2, LastOpenPP=NULL, LastOpenS1=NULL,

CurrentOpenSBAR=NULL, LastOpenSBAR=NULL, CurrentOpenUCP=NULL, CurrentCloseNumber≤9, Last-

ClosePRT=NULL, CurrentOpenNumber≤4 (+0.419213 : 0.115449/0.0499046).

BOUNDARY :- LastPOS=NN, CurrentCloseNumber≤0, CurrentOpenPP=NULL (+0.407616 : 0.104533/0.0462453).

BOUNDARY :- LastPOS=RB, CurrentCloseNumber≤0 (+0.381382 : 0.0224029/0.0104344).

BOUNDARY :- LastPOS=NN, CurrentCloseNumber≤1, LastCloseS=NULL, LastCloseQP=NULL, Curren-

tOpenVP=NULL, CurrentOpenPP=NULL, LastCloseNumber≤5, CurrentOpenNumber≤3, LastOpenSBAR=NULL,

LastOpenUCP=NULL, LastOpenADVP=NULL, CurrentOpenADJP=NULL (+0.357525 : 0.0709678/0.0347019).

BOUNDARY :- LastOpenVP=VPopen, CurrentOpenVP=NULL, CurrentOpenADVP=NULL, CurrentOpenNumber≥1,

CurrentOpenADJP=NULL, LastCloseS=NULL, CurrentCloseNumber≤5, LastOpenNumber≤3, CurrentOpenS=NULL,

LastCloseNumber≤0, CurrentOpenNumber≤3, CurrentOpenPRT=NULL, CurrentOpenUCP=NULL, Current-

ClosePP=NULL, CurrentCloseADVP=NULL, CurrentCloseSBAR=NULL (+0.348908 : 0.0830403/0.0413138).

BOUNDARY :- LastPOS=NNS, CurrentOpenNumber≥1 (+0.344791 : 0.0690535/0.0346372).

BOUNDARY :- LastPOS=NNP, CurrentCloseNumber≤1 (+0.334412 : 0.043776/0.0224143).

BOUNDARY :- LastPOS=VBG (+0.32918 : 0.013751/0.00710641).

BOUNDARY :- LastPOS=NNS, LastCloseNP=NULL, CurrentCloseNumber≤2, CurrentOpenPP=NULL (+0.308465 :

0.0461072/0.0248675).

76

BOUNDARY :- CurrentOpenS=Sopen, LastCloseNumber≤0, LastOpenSBAR=NULL, LastOpenPP=NULL (+0.302713

: 0.0450152/0.0245594).

BOUNDARY :- LastOpenADJP=ADJPopen (+0.293643 : 0.0137243/0.00761696).

BOUNDARY :- CurrentPOS=AUX, LastCloseNumber≥1 (+0.248136 : 0.034486/0.0209848).

BOUNDARY :- LastOpenNumber≤0, TwoBackPOS=NN (+0.234298 : 0.0581414/0.0363799).

BOUNDARY :- LastCloseNumber≥1, CurrentOpenS=NULL, CurrentOpenNumber≥1, CurrentOpenS1=NULL,

CurrentCloseNumber≤2 (+0.198282 : 0.218088/0.146684).

BOUNDARY :- LastOpenNumber≤0, CurrentOpenNumber≥1 (+0.160547 : 0.189195/0.137226).

BOUNDARY :- TwoBackPOS=JJ (+0.130675 : 0.0597886/0.046032).

BOUNDARY :- CurrentOpenPP=PPopen (+0.103014 : 0.105398/0.0857696).

BOUNDARY (+0.000191299 : 0.500153/0.499962).

default NULL (-2.14296 : 0.0110547/0.805197).

resolution=best.

=============================== summary ===============================

Train error rate: 9.84% +/- 0.21% (19344 datapoints) <<

Test error rate: 10.15% +/- 0.66% (2068 datapoints) <<

Hypothesis size: 45 rules, 238 conditions

Learning time: 567.99 sec

C4.5 Rules accent prediction, full label set:

• If((¬ Current Open UCP) ∧ (¬Last Open WHADJP)∧(¬Last Close

NX) ∧ (Current Word POS ∈ <AUX, CC, DT, EX, IN, MD, PRP,

PRP$, RBS, TO, UH, WDT, WP, WP$, WRB>) ∧ (¬Current Close

<VP, PP, SBAR>) ∧ (Last Word POS ∈ <NULL, AUX, CC, CD,

DT, EX, IN, JJ, JJR, JJS, MD, NN, NNP, NNS, PDT, PRP, PRP$,

RB, RBR, RP, TO, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP,

WRB>) ∧ (Next Word POS ∈ <NULL, AUX, AUXG, CD, DT, FW,

IN, JJ, JJR, JJS, MD, NN, NNP, NNS, PDT, PRP, PRP$, RB, RBR,

RBS, TO, VB, VBD, VBG, VBN, VBP, VBZ, WRB>)) ⇒ Unaccented

• Else If((¬Current Open S) ∧ (Two Back Word POS ∈ <CC,DT,IN,JJ,

NN,NNS,RB>) ∧(Next Word POS ∈ <CD,VBN>) ∧ (Last Word POS

∈ <CD,FW,MD,NN>)) ⇒ Unaccented

• Else If((¬Current Open ADVP)∧(¬Last Close SBAR)∧ (Last Close

WHADVP)) ⇒ Unaccented

• Else If((Current Open PRT)∧(¬Current Close NP) ∧ (¬Last Open

SINV) ∧ (Two Back POS ∈ <AUX,MD,NN,PRP,VB>)) ⇒
Unaccented

• Else If(Current Open SQ) ⇒ Unaccented

• Else If(Current Open WHADJP) ⇒ Unaccented

• Else If((¬Current Close PP)∧(Current Close SBAR)) ⇒ Accented

• Else If((Last Breath)∧(Next Word POS ∈ <AUX, MD>)) ⇒ Accented

77

• Else If((Next Word POS ∈ <EX,IN,PRP,TO,VBP,VBZ,WP>)∧ (Cur-

rent Word POS ∈ <DT,MD>)∧ (Last Word POS ∈ <NULL,AUX,

CC,CD,IN,JJ,NN,NNS,RB,TO,VB,VBG,VBZ,WDT>)) ⇒ Accented

• Else If((¬Current Open <CONJP,WHADVP,SQ,WHADJP>)∧
(¬Last Open WHADJP)∧ (Current Word POS ∈ <AUXG,CD,FW,JJ,

JJR,JJS,NN,NNP,NNS,PDT,RB,RBR,RBS,RP,VB,VBD,VBG,VBN,

VBP,VBZ>)) ⇒ Accented

• Else If(Current Close UCP) ⇒ Accented

• Else If((Next Word POS = “CC”)∧(¬Current Close PP)) ⇒ Accented

• Else Unaccented

78

APPENDIX E

C4.5 RULES ACCENT
PREDICTION

In this appendix, the full set of rules generated by C4.5 Rules on data set 3

for accent performance and their usage on the test set are shown. Rules are

listed in order of importance by output class, and the first rule that has its

conditions fulfilled dominates the other rules.
Composite ruleset:

Rule 8:

CurrentOpenUCP = NULL

CurrentPOS in {AUX, CC, DT, EX, IN, MD, PRP, PRP$, RBS, TO, UH, WDT, WP, WP$, WRB}

LastPOS in {NULL, AUX, CC, CD, DT, EX, IN, JJ, JJR, JJS, MD, NN, NNP, NNS, PDT, PRP, PRP$, RB, RBR, RP,

TO, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WRB}

CurrentCloseVP = NULL

LastOpenWHADJP = NULL

LastCloseNX = NULL

CurrentClosePP = NULL

CurrentCloseSBAR = NULL

nextPOS in {NULL, AUX, AUXG, CD, DT, FW, IN, JJ, JJR, JJS, MD, NN, NNP, NNS, PDT, PRP, PRP$, RB, RBR,

RBS, TO, VB, VBD, VBG, VBN, VBP, VBZ, WRB}

⇒ class NULL [86.2%]

Rule 23:

CurrentOpenS = NULL

nextPOS in {CD, VBN}

LastPOS in {CD, FW, MD, NN}

TwoBackPOS in {CC, DT, IN, JJ, NN, NNS, RB}

⇒ class NULL [83.5%]

Rule 3:

CurrentOpenADVP = NULL

LastCloseSBAR = NULL

LastCloseWHADVP = WHADVPclose

⇒ class NULL [70.7%]

Rule 10:

TwoBackPOS in {AUX, MD, NN, PRP, VB}

CurrentOpenPRT = PRTopen

CurrentCloseNP = NULL

LastOpenSINV = NULL

⇒ class NULL [62.3%]

79

Rule 5:

CurrentOpenSQ = SQopen

⇒ class NULL [61.1%]

Rule 11:

CurrentOpenWHADJP = WHADJPopen

⇒ class NULL [54.6%]

Rule 12:

CurrentClosePP = NULL

CurrentCloseSBAR = SBARclose

⇒ class Accented [89.3%]

Rule 20:

LastOpenS1 = S1open

nextPOS in {AUX, MD}

⇒ class Accented [84.7%]

Rule 31:

nextPOS in {EX, IN, PRP, TO, VBP, VBZ, WP}

CurrentPOS in {DT, MD}

LastPOS in {NULL, AUX, CC, CD, IN, JJ, NN, NNS, RB, TO, VB, VBG, VBZ, WDT}

⇒ class Accented [80.3%]

Rule 21:

CurrentOpenCONJP = NULL

CurrentOpenWHADVP = NULL

CurrentOpenSQ = NULL

CurrentOpenWHADJP = NULL

LastOpenWHADJP = NULL

CurrentPOS in {AUXG, CD, FW, JJ, JJR, JJS, NN, NNP, NNS, PDT, RB, RBR, RBS, RP, VB, VBD, VBG, VBN,

VBP, VBZ}

⇒ class Accented [80.2%]

Rule 14:

CurrentCloseUCP = UCPclose

⇒ class Accented [79.4%]

Rule 7:

nextPOS = CC

CurrentClosePP = NULL

⇒ class Accented [61.0%]

Default class: NULL

Rule Size Error Used Wrong Advantage

23 4 16.5% 25 4 (16.0%) 1 (4|3) NULL

10 4 37.7% 4 2 (50.0%) 0 (2|2) NULL

5 1 38.9% 2 0 (0.0%) 0 (0|0) NULL

11 1 45.4% 1 0 (0.0%) 0 (0|0) NULL

12 2 10.7% 22 5 (22.7%) 0 (0|0) Accented

20 2 15.3% 16 5 (31.2%) -2 (2|4) Accented

31 3 19.7% 6 2 (33.3%) 2 (4|2) Accented

21 6 19.8% 1278 235 (18.4%) 782 (1013|231) Accented

7 2 39.0% 3 0 (0.0%) 3 (3|0) Accented

Tested 2068, errors 357 (17.3%) <<

(a) (b) <-classified as

1078 110 (a): class Accented

247 633 (b): class NULL

80

APPENDIX F

SYNTACTIC LABELS

All the contents of this Appendix are copied with minor modification from

the part-of-speech tagging and treebank II bracketing style manuals from

http://www.cis.upenn.edu/˜treebank/home.html [44], [45].

F.1 Bracket Labels

F.1.1 Clause level

S — Simple declarative clause, i.e., one that is not introduced by a (possibly

empty) subordinating conjunction or wh-word and that does not exhibit

subject-verb inversion.

SBAR — Clause introduced by a (possibly empty) subordinating conjunc-

tion.

SBARQ — Direct question introduced by a wh-word or wh-phrase. Indi-

rect questions and relative clauses should be bracketed as SBAR, not

SBARQ.

SINV — Inverted declarative sentence, i.e., one in which the subject follows

the tensed verb or modal.

SQ — Inverted yes/no question, or main clause of a wh-question, following

the wh-phrase in SBARQ.

F.1.2 Phrase level

ADJP — Adjective Phrase. Phrasal category headed by an adjective (in-

cluding comparative and superlative adjectives). Example: outrageously

81

expensive.

ADVP — Adverb Phrase. Phrasal category headed by an adverb (including

comparative and superlative adverbs). Examples: rather timidly , very

well indeed , rapidly .

CONJP — Conjunction Phrase. Used to mark certain “multi-word” con-

junctions, such as as well as, instead of .

FRAG — Fragment.

INTJ — Interjection. Corresponds approximately to the part-of-speech tag

UH.

LST — List marker. Includes surrounding punctuation.

NAC — Not A Constituent; used to show the scope of certain prenominal

modifiers within a noun phrase.

NP — Noun Phrase. Phrasal category that includes all constituents that

depend on a head noun.

NX — Used within certain complex noun phrases to mark the head of the

noun phrase. Corresponds very roughly to N-bar level but used quite

differently.

PP — Prepositional Phrase. Phrasal category headed by a preposition.

PRN — Parenthetical.

PRT — Particle. Category for words that should be tagged RP, as described

below

QP — Quantifier Phrase (i.e., complex measure/amount phrase); used within

NP.

RRC — Reduced Relative Clause.

UCP — Unlike Coordinated Phrase.

VP — Verb Phrase. Phrasal category headed a verb.

WHADJP — Wh-adjective Phrase. Adjectival phrase containing a wh-

adverb, as in how hot .

WHADVP — Wh-adverb Phrase. Introduces a clause with an ADVP gap.

May be null (containing the 0 complementizer) or lexical, containing a

wh-adverb such as how or why .

82

WHNP — Wh-noun Phrase. Introduces a clause with an NP gap. May

be null (containing the 0 complementizer) or lexical, containing some

wh-word, e.g., who, which book , whose daughter , none of which, or how

many leopards.

WHPP — Wh-prepositional Phrase. Prepositional phrase containing a wh-

noun phrase (such as of which or by whose authority) that either intro-

duces a PP gap or is contained by a WHNP.

X — Unknown, uncertain, or unbracketable. X is often used for bracketing

typos and in bracketing the...the-constructions.

F.2 Part of Speech Tags

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD Modal

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural

83

PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

PRP$ Possesive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Participle

SYM Symbol

TO to

UH Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possesive wh-pronoun

WRB Wh-adverb

84

REFERENCES

[1] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “Switchboard tele-

phone speech corpus for research and development,” in Preceedings of

IEEE Conference on Acoustics, Speech and Signal Processing, vol. 1,

San Francisco, March 1992, pp. 517–520.

[2] P. J. Price, M. Ostendorf, and C. W. Wightman, “Prosody and pars-

ing,” in Proceedings: Speech and Natural Language Workshop. Morgan

Kaufman, Publishers, Inc., October 1989, pp. 5–11.

[3] M. Ostendorf, P. J. Price, and S. Shattuck-Hufnagel, “The Boston

University radio news corpus,” ECS Department, Boston University,

Boston, MA, Tech. Report ECS-95-001, February 1995.

[4] J. Laver, “The production of speech,” in New Horizons in Linguistics,

J. Lyons, Ed. Harmondsworth: Penguin Books, 1970, pp. 53–75.

[5] W. L. Chafe, Discourse, Consciousness, and Time. Chicago: University

of Chicago Press, 1994, ch. 22, pp. 278–295.

[6] S. C. Arnfield, “Prosody and syntax in corpus based analysis of

spoken English,” Ph.D. dissertation, The University of Leeds School of

Computer Studies, 1994, http://www.linguistics.rdg.ac.uk/staff/Simon.

Arnfield/papers/thesis.ps.gz.

[7] J. Hirschberg, “Using discourse context to guide pitch accent decisions

in synthetic speech,” in Talking Machines, G. Baily and C. Benoit, Eds.

North-Holland: North-Holland Elsevier Science Publishers B.V., 1992,

pp. 367–376.

[8] J. Hirschberg, “Pitch accent in context: Predicting intonational

prominence from text,” Artificial Intelligence, vol. 63, no. 1-2, pp.

305–340, 1993, http://www1.cs.columbia.edu/∼julia/papers/aij93.ps.

85

[9] A. Black and P. Taylor, “Assigning intonation elements and prosodic

phrasing for English speech synthesis from high level linguistic input,”

in Proceedings ICSLP, 1994, pp. 715–718.

[10] W. A. Lee, “Prosodic aids to speech recognition,” in Trends in Speech

Recognition, W. A. Lee, Ed. Englewood Cliffs, N.J.: Prentice-Hall,

Inc., 1980, pp. 166–205.

[11] M. Swerts and R. Geluykens, “Prosody as a marker of informational

flow in spoken discourse,” Language and Speech, vol. 37, no. 1, pp. 21–

43, 1994.

[12] S. Shattuck-Hufnagel, “Phrase-level phonology in speech production

planning: Evidence for the role of prosodic structure,” in Prosody: The-

ory and Experiment, M. Horne, Ed. Boston: Kluwer Academic Pub-

lishers, 2000, pp. 201–230.

[13] A. Wennerstrom, The Music of Everyday Speech. Oxford: Oxford Uni-

versity Press, 2001, ch. 4, pp. 67–95.

[14] A. W. Black and P. Taylor, “Assigning phrase breaks from part-of-speech

sequences,” in Proc. Eurospeech ’97, Rhodes, Greece, 1997, pp. 995–998.

[15] C. W. Wightman and M. Ostendorf, “Automatic labeling of prosodic

patterns,” IEEE Transactions on Speech and Audio Processing, vol. 2,

no. 4, pp. 469–481, October 1994.

[16] M. Swerts, “Prosodic features at discourse boundaries of different

strength,” Journal of the Accoustical Society of America, vol. 101, no. 1,

pp. 514–521, January 1997.

[17] C. W. Wightman and M. Ostendorf, “Automatic recognition of prosodic

phrases,” in IEEE International Conference on Acoustics, Speech, and

Signal Processing, vol. 1, April 1991, pp. 321–324.

[18] C. W. Wightman and M. Ostendorf, “Automatic recognition of intona-

tional features,” in IEEE International Conference on Acoustics, Speech,

and Signal Processing, vol. 1, March 1992, pp. 221–224.

86

[19] M. Q. Wang and J. Hirschberg, “Automatic classification of intonational

phrase boundaries,” Computer Speech and Language, vol. 6, pp. 175–196,

1992, http://www1.cs.columbia.edu/∼julia/papers/csl92.ps.

[20] K. N. Ross, “Modeling of intonation for speech synthesis,” Ph.D.

dissertation, Boston University College of Engineering, 1995, http:

//ssli.ee.washington.edu/papers/grad/kr\ phd.html.

[21] J. Hirschberg and O. Rambow, “Learning prosodic features using a tree

representation,” in Proceedings of Eurospeech, 2001, pp. 1175–1180,

http://www1.cs.columbia.edu/∼julia/papers/euro01-phr.ps.

[22] The XTAG Group, “A lexicalized tree adjoining grammar for English,”

Institute for Research in Cognitive Science, University of Pennsylvania,”

Tech. Rep. IRCS-98-18, 1998.

[23] J. Hirschberg, “Training accent and phrasing assignment on large cor-

pora,” in Data-Driven Techniques in Speech Synthesis, R. I. Damper,

Ed. Boston: Kluwer Academic Publishers, 2001, pp. 239–273.

[24] T. M. Mitchell, Machine Learning. Burr Ridge, IL.: WCB Mcraw-Hill,

1997.

[25] J. R. Quinlan, C4.5: Programs for Machine Learning. Boston: Morgan

Kaufmann Publishers, 1993.

[26] J. R. Quinlan, “Improved use of continuous attributes in C4.5,”

Journal of Artificial Intelligence Research, vol. 4, pp. 77–90, 1996,

ftp://ftp.cs.cmu.edu/project/jair/volume4/quinlan96a.ps.

[27] J. R. Quinlan, “MDL and categorical theories (continued),” in

Proceedings of the 12th International Conference on Machine Learning,

1995, pp. 464–470, http://www.cse.unsw.edu.au/∼quinlan/q.ml95.ps.

[28] W. W. Cohen, “Fast effective rule induction,” in Proceedings of the

Twelfth International Conference on Machine Learning, 1995, pp. 115–

123, http://www-2.cs.cmu.edu/∼wcohen/postscript/ml-95-ripper.ps.

[29] J. R. Quinlan and R. M. Cameron-Jones, “FOIL: A midterm

report,” in Machine Learning: ECML-93, 1993, pp. 3–20, http:

//www.cse.unsw.edu.au/∼quinlan/q+cj.ecml93.ps.

87

[30] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of

on-line learning and an application to boosting,” Journal of Computer

and System Sciences, vol. 55, no. 1, pp. 119–139, 1997.

[31] R. E. Schapire and Y. Singer, “Improved boosting algorithms using

confidence-rated predictions,” in Proceedings of the Eleventh Annual

Conference on Computational Learning Theory, 1998, pp. 80–91.

[32] W.-Y. Loh and Y.-S. Shih, “Split selection methods for classification

trees,” Statistica Sinica, vol. 7, pp. 815–840, 1997, http://www.stat.

wisc.edu/p/stat/ftp/pub/loh/treeprogs/quest1.7/sinica.pdf.

[33] J. Hartigan and M. A. Wong, “Algorithm as 136: A k-means

clustering algorithm,” Applied Statistics, vol. 28, no. 1, pp. 100–

108, 1979, http://links.jstor.org/sici?sici=0035-9254\%281979\%2928\
%3A1\%3C199\%3AAA1ACA\%3E2.0.CO\%3B2-V.

[34] W.-Y. Loh and N. Vanichsetakul, “Tree-structured classi-

fication via generalized discriminant analysis,” Journal of

the American Statistical Association, vol. 83, pp. 715–

728, 1988, http://links.jstor.org/sici?sici=0162-1459\%28198809%

2983\%3A403\%3C715\%3ATCVGDA\%3E2.0.CO\%3B2-U.

[35] H. Levene, “Robust tests for equality of variances,” in Contributions to

Probability and Statistics, I. Olkin, S. G. Ghurye, W. Hoeffding, W. G.

Madow, and H. B. Mann, Eds. Stanford: Stanford University Press,

1960, pp. 278–292.

[36] Y.-S. Shih, “Families of splitting criteria for classification trees,”

Statistics and Computing, vol. 9, pp. 309–315, 1999, http:

//lilac.math.ccu.edu.tw/∼yshih/papers/sinica.pdf.

[37] G. H. John and P. Langley, “Estimating continuous distributions in

Bayesian classifiers,” in Proceedings of the Eleventh Conference on

Uncertainty in Artificial Intelligence. San Mateo, 1995, pp. 338–345,

http://citeseer.nj.nec.com/john95estimating.html.

[38] M. P. Marcus and B. Santorini, “Building a very large natural language

corpora: The penn treebank,” Computational Linguistics, vol. 19, no. 2,

pp. 313–330, 1993.

88

[39] K. S. et al., “TOBI: A standard for labeling prosody,” in Proceedings of

the International Conference on Spoken Language Processing, 1992, pp.

867–870.

[40] D. Roth and D. Zelenko, “Part of speech tagging using a network of

linear separators,” in COLING-ACL ’98, August 1998, pp. 1136–1142,

http://l2r.cs.uiuc.edu/∼danr/Papers/pos.pdf.

[41] Y. Even-Zohar and D. Roth, “A sequential model for multi-class

classification,” in EMNLP’01: The Joint SIGDAT Conference on

Empirical Methods in Natural Language Processing, June 2001, pp.

44–53, http://l2r.cs.uiuc.edu/∼danr/Papers/emnlp01.pdf.

[42] E. Charniak, “A maximum-entropy-inspired parser,” Brown, Tech. Rep.

CS99-12, 1999.

[43] S. Borys, “Recognition of prosodic factors and detection of

landmarks for improvements to continuous speech recognition systems,”

B.S. thesis, Electrical and Computer Engineering Department

at the University of Illinois at Urbana-Champaign, 2003, http:

//www.ifp.uiuc.edu/speech/pubs/2003/borys\ thesis.pdf.

[44] A. Bies, M. Ferguson, K. Katz, and R. MacIntyre, “Bracketing

guidelines for Treebank II style Penn Treebank project,” University of

Pennsylvania, Tech. Rep., 1995, ftp://ftp.cis.upenn.edu/pub/treebank/

doc/manual/root.ps.gz.

[45] B. Santorini, “Part-of-speech tagging guidelines for the Penn Treebank

Project (3rd revision),” Department of Computer and Information

Science, University of Pennsylvania, Philadelphia, Tech. Rep. MS-CIS-

90-47, Line Lab 178, 1990, ftp://ftp.cis.upenn.edu/pub/treebank/doc/

manual/root.ps.gz.

89

