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Abstract
Linear discriminant analysis (LDA) in its original model-
free formulation is best suited to classification problems with
equal-covariance classes. Heteroscedastic discriminant analy-
sis (HDA) removes this equal covariance constraint, and there-
fore is more suitable for automatic speech recognition (ASR)
systems. However, maximizing HDA objective function does
not correspond directly to minimizing the recognition error. In
its original formulation, HDA solves a maximum likelihood es-
timation problem in the original feature space to calculate the
HDA transformation matrix. Since the dimension of the orig-
inal feature space in ASR problems is usually high, the esti-
mation of the HDA transformation matrix becomes computa-
tionally expensive and requires a large amount of training data.
This paper presents a generalization of LDA that solves these
two problems. We start with showing that the calculation of
the LDA projection matrix is a maximum mutual information
estimation problem in the lower-dimensional space with some
constraints on the model of the joint conditional and uncondi-
tional probability density functions (PDF) of the features, and
then, by relaxing these constraints, we develop a dimensional-
ity reduction approach that maximizes the conditional mutual
information between the class identity and the feature vector in
the lower-dimensional space given the recognizer model.

Using this approach, we achieved 1% improvement in
phoneme recognition accuracy compared to the baseline sys-
tem. Improvement in recognition accuracy compared to both
LDA and HDA approaches is also achieved .

1. Introduction
One of the main objectives of speech signal analysis in ASR
systems is to produce a parameterization of the speech signal
that reduces the amount of data that is presented to the speech
recognizer, and captures salient characteristics suited for dis-
criminating among different speech units. Most ASR systems
use cepstral features augmented with dynamic information from
the adjacent speech frames. The algorithms for cepstral features
estimation use concepts based on human speech perception like
Mel-frequency scaling and critical band filters to simulate the
front-end of the human auditory system. Even with additional
techniques for speaker normalization and combating environ-
mental noise, incorporating properties of human speech pro-
duction and auditory perception is not necessarily the optimal
approach to feature extraction for speech recognition, as they
are not optimized to discriminate among speech units.

Most dimensionality reduction techniques applied to
speech recognition are variants or extensions of linear discrim-
inant analysis (LDA) [1]. The results reported on the appli-
cation of LDA to speech recognition show consistent gain for

small vocabulary tasks and mixed results for large vocabulary
applications [2]. This can be attributed mainly to making
assumptions about the problem that are unrealistic like equal
class-conditional covariance matrices, and using an optimality
criterion that is not necessarily consistent with the objective of
minimizing the recognition error. It was shown that linear dis-
criminant analysis is related to the maximum likelihood estima-
tion of parameters for a Gaussian model, with a priori assump-
tions on the structure of the model [3]. This result is further
generalized by assuming that class distributions are a mixture
of Gaussians [4]. In [2], LDA is generalized to the case of
classes of different covariance matrices and this generalization
is referred to as heteroscedastic discriminant analysis (HDA).
An alternative interpretation of HDA as a constrained maximum
likelihood projection for a Gaussian model is introduced in [5].

The objective function in all these methods is not directly
related to minimizing the recognition error, and therefore does
not necessarily minimize the discrimination loss due to dimen-
sionality reduction. LDA transformation, for example, tends to
preserve distances of already well-separated classes [6]. Max-
imizing the mutual information between the features and the
class is more intuitively related to minimizing the recognition
error, and therefore we argue that it is a better objective for dis-
criminant analysis than maximizing the likelihood under some
model assumptions or constraints.

In this paper, we show that calculating the LDA transforma-
tion matrix is a maximum conditional mutual information esti-
mation (MCMIE) problem with constraints on both the class-
conditional and the unconditional PDFs. By relaxing these con-
straints, we present a generalization of LDA to MCMI projec-
tion (MCMIP), and describe an algorithm that calculates the
MCMIP transform given the recognizer model. This generaliza-
tion has three advantages: it maximizes the a posteriori prob-
ability of the model corresponding to the training data given
the data which is closely related to minimizing the training
data recognition error, it is calculated in the lower-dimensional
space, and it takes into consideration the assumptions of the
recognizer model. In the next section, discriminant analysis ap-
proaches are discussed and the LDA approach is formulated as
an MCMIE problem. The MCMIP method is described in sec-
tion 3 and an iterative algorithm is introduced to estimate the
MCMIP transform and the parameters of the recognizer. Then,
recognition experiments are described in section 4. Finally, sec-
tion 5 provides discussion of the results and a summary of this
work. In this paper, a superscript is used as an index of a realiza-
tion of the random vector. Capital letters are used to denote the
random variables and the corresponding small letters to denote
their realizations.



2. Discriminant Analysis
An interpretation of LDA that relates LDA to the conditional
mutual information between the lower-dimensional feature vec-
tor and the class identity is introduced in this section.

2.1. Linear Discriminant Analysis

The linear discriminant analysis (LDA) technique tries to im-
prove the linear separability of the classes by finding the lin-
ear transform that maximizes the ratio of the determinant of
between-class covariance and the determinant of the average
within-class covariance [1]. Given a set of � independent n-
dimensional observation vectors ��������� � �� � �� , each
of them belongs to only one class � � �� � � � � � . Let each class
� be characterized by its mean �� , covariance matrix �� , and
observation count �� , where
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�� is the class corresponding to the ith frame. The within-class
scatter is given by
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and the between-class scatter is given by
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where � is the global mean of the observations. The goal of
LDA is to find a linear transformation characterized by the 	�

matrix �, for 	 � 
, such that
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is maximized.
The maximization can be formulated as principal compo-

nent analysis of the Fisher covariance matrix or as a maximum
likelihood estimation problem [2]. This is achieved by using
the work by Campbell [3] who has shown that linear discrim-
inant analysis is related to the maximum likelihood estimation
of parameters for a Gaussian model, with a priori assumptions
on the structure of the model. The first assumption is that all the
class discrimination information resides in a p-dimensional sub-
space of the n-dimensional feature space where the LDA map-
ping is represented by 	� 
 matrix. The second assumption is
that the within-class variances are equal for all classes.

2.2. Maximum Mutual Information Interpretation of LDA

There are several possible class separability measures. One
of the most general measures of the ability of the features to
discriminate among classes is its mutual information with the
classes. Mutual information is an invariant measure under any
one-to-one transformation. Therefore, for a full-rank linear
transform of the 
� � feature vector �,�
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where  is 	 � � vector, � is �
 � 	� � � vector, � is 	 � 

matrix, and � is �
� 	�� 
 matrix,

������ � ������� (5)

with equality if and only if ������ � �. This happens if and
only if the feature vector � is statistically independent of the
class identity � [7]. Therefore, we should expect that getting
rid of these features will have negligible effect on the recognizer
performance or even improve it, if it has a negligible mutual
information with the class identities. The mutual information
between the feature vector � and the set of classes � is
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where �� ���������� , and � �� are the class-conditional and
the unconditional PDFs respectively. Since we do not have the
true PDFs, we calculate an estimate of the mutual information,
which is the conditional mutual information given a maximum
likelihood estimate of the parameters 	 of both �� ����������,
and � ��
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where � is the number of training frames, and �� is the class
corresponding to the ith frame.

Our goal here is to show that LDA is equivalent to the
problem of finding the linear transformation matrix � that max-
imize the conditional mutual information between the lower-
dimensional feature vector � and the class identity � with a
priori assumptions on the structure of the model. Let each class-
conditional PDF in the lower-dimensional space be modeled by
a Gaussian PDF with all of them sharing the same covariance
matrix
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for � � �� � � � � , (8)

where �
 is the maximum-likelihood estimate (MLE) of the
class-conditional covariance matrix, �� is the MLE of the mean.
Let also the unconditional PDF in the lower-dimensional space
be modeled by a Gaussian PDF
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where�
 is the maximum-likelihood estimate of the covariance
matrix, � is the MLE of the global mean.

Then maximizing the conditional mutual information given
the maximum-likelihood estimate of these models with respect
to � is equivalent to maximizing

� � ��� ��
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� � (10)

Using the following relations
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and that the logarithm is a monotonic function, the objective
function to be maximized becomes
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The 	 � 
 transformation �� that maximize the objective
function in Equation 13 is the matrix consisting of the 	 eigen-
vectors of the Fisher covariance matrix ���� corresponding
to the largest 	 eigenvalues, and therefore is the solution of the
LDA maximization also.

It should be noted that the assumption that � �� is Gaus-
sian is inconsistent with the assumption that �� ���������� are
Gaussian, as in general if �� ���������� are Gaussian PDFs,
then � �� is a Gaussian mixture PDF. This explicit modeling
of � �� that is inconsistent with the models for �� ����������

is a serious limitation of LDA. It is the main reason that the
LDA solution in many cases does not correspond to minimizing
the recognition error.

2.3. Heteroscedastic Discriminant Analysis

Heteroscedastic discriminant analysis (HDA) is an extension to
LDA that removes the equal covariance constraint [2]. HDA
was first formulated as a maximum likelihood estimation prob-
lem for normal populations with common covariance matrix in
the rejected subspace. An alternative interpretation of HDA
as a constrained maximum likelihood projection for a full-
covariance Gaussian model is introduced in [5]. It maximizes
the objective function
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This approach can be related to the maximization of the con-
ditional mutual information in the lower dimensional space by
removing the equal class-conditional covariance from the previ-
ous derivation for LDA. The assumption that � �� is Gaussian
is still inconsistent with the assumption that �� ���������� are
Gaussian. Using the convexity of the relative entropy [7], it
can be shown that this assumption underestimates the condi-
tional mutual information as opposed to calculating � �� from
the class-conditional PDFs �� ����������, i.e.
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where 
��������	� is the conditional mutual information esti-
mated with an explicit Gaussian model of � ��, and 
������	�
is the conditional mutual information estimated by calculating
� �� from the class-conditional PDFs �� ����������.

3. Maximum Conditional Mutual
Information Projection

In the following, we will relax the constraints of discriminant
analysis to develop the maximum conditional mutual informa-
tion projection (MCMIP) approach.

3.1. MCMIP Formulation

Given a set of class-conditional probabilistic models used by
the classifier or the recognizer, the goal of MMICP is to find a
	-dimensional subspace of an 
-dimensional feature space that
retains the discrimination information contained in the original
high-dimensional space by maximizing an estimate of the con-
ditional mutual information between the features and the class
identity. In other words, MMICP searches for the 	 � 
 linear
transformation or projection �� of the features that maximize
the conditional mutual information 
������	�, i.e.

�
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where  � ��. From the previous discussion of discriminant
analysis, the feature vector � achieved by MMICP has a higher
conditional mutual information with the class identities given
the classifier’s set of class-conditional probabilistic models than
the one obtained by discriminant analysis approaches. From
Equation 7, it can be easily shown that maximizing 
������	�
is equivalent to maximizing the a posteriori probability of the
model corresponding to the training data given the data which is
closely related to minimizing the training data recognition error.

3.2. Implementation of MCMIP For Speech Recognition

Applying the MCMIP approach for dimensionality reduction
to an HMM-based speech recognizer requires the estimation of
the conditional mutual information given the HMM parameters.
The parameters of the HMM recognizer can be calculated using
maximum likelihood estimation or discriminant approaches like
maximum mutual information. We choose to use the expecta-
tion maximization (EM) algorithm to get maximum likelihood
estimates of the HMM parameters [8]. Using these estimates
of the parameters, the empirical estimate of the mutual informa-
tion to be maximized is
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where �� is the maximum likelihood state assignment for the ith
frame from the training data, � is the number of frames in the
training data, and
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for all � � �� �� � � � � � , where ��� is the weight of the kth
Gaussian PDF in the Gaussian mixture of state �, � is the num-
ber of Gaussian PDFs in the Gaussian mixture, ��� is the mean
of the kth Gaussian PDF in the mixture, and ��� is the covari-
ance matrix of the kth Gaussian PDF in the mixture.

To use a gradient-based algorithm to maximize our empiri-
cal estimate of the conditional mutual information, 
������	�,
with respect to the linear transform �, we calculate the deriva-
tive of the objective function with respect to �
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The steps of the iterative algorithm to update the transfor-
mation matrix � and the HMM parameters are

1. Initialize the transformation matrix �.



2. Calculate the feature vectors  using the relation  � ��,
where x is the input acoustic feature vector.

3. Using the EM algorithm, estimate the HMM parameters
and segment the training data.

4. Using the current HMM parameters and training data
segmentation, estimate � that maximizes the conditional
mutual information, 
������	�, using the conjugate-
gradient algorithm.

5. Iterate (starting from �) until convergence.

4. EXPERIMENTS AND RESULTS

The MCMIP algorithm described in section 3 is used to study
the optimal feature subspace for diagonal-covariance Gaussian
mixture HMM modeling of the TIMIT database.

The baseline 26-feature vector consists of 12 MFCC co-
efficients, energy and their deltas. The input to the MCMIP
algorithm consists of 5 of these feature vectors centered at the
target frame. This 130-feature vector is then transformed us-
ing the MCMIP algorithm to a 26-feature vector. In each it-
eration, the new feature vector is calculated using the current
MCMIP transformation parameters, then the maximum likeli-
hood estimates of the HMM model parameters are calculated.
Then, the MCMIP transformation matrix is calculated using the
conjugate-gradient algorithm. After the iterative algorithm con-
verges to a set of locally optimal HMM and MCMIP param-
eters, the training data are transformed by the MCMIP matrix
yielding the final MCMIP feature vector.

In our experiments, the 61 phonemes defined in the TIMIT
database are mapped to 48 phoneme labels for each frame of
speech as described in [9]. These 48 phonemes are collapsed
to 39 phonemes for testing purposes as in [9]. A three-state
left-to-right model for each triphone is trained. The number of
mixtures per state was fixed to four. The parameters of the rec-
ognizer and the MCMIP transform are trained using the training
portion of the TIMIT database. The parameters of the triphone
models are then tied together using the same approach as in
[10].

To compare the performance of the proposed algorithm
with other approaches, we generated acoustic features using
LDA, and HDA. We used the same 130-feature vector input to
MCMIP with both LDA and HDA and kept the dimensions of
the output of LDA and HDA the same as the MCMIP output.

Testing this recognizer, using the test data in the TIMIT
database, we get the phoneme recognition results in table 1.
These results are obtained by using a bigram phoneme language
model and by keeping the insertion error around 10% as in [9].
The table compares MCMIP recognition results to the ones ob-
tained by the baseline MFCC, LDA, and HDA.

Table 1: Phoneme Recognition Accuracy
Acoustic Features Recognition Accuracy
MFCC 73.7%
LDA 73.8%
HDA 74.1%
MCMIP 74.7%

5. DISCUSSION
In this work, we described a framework for discriminant anal-
ysis for speech recognition. This framework is an extension of
current approaches by relaxing the constraints imposed on the
model in LDA and HDA approaches. Our approach maximizes
the conditional mutual information between the feature vector
and the HMM states which is closely related to recognition er-
ror, as opposed to maximizing the likelihood in LDA and HDA
approaches that is not directly related to recognition error. We
introduced also an iterative algorithm to calculate the MCMIP
matrix for an HMM-based recognizer. Phoneme recognition
experiments using features generated by this algorithm show
significant improvement compared to previous dimensionality
reduction transforms like LDA, and HDA.
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