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Abstract

Does prosody help word recognition? In this paper, we propose
a novel probabilistic framework in which word and phoneme
are dependent on prosody in a way that improves word recog-
nition. The prosody attribute that we investigate in this study
is the duration lengthening effects of the speech segments in
the vicinity of intonational phrase boundaries. Explicit Du-
ration Hidden Markov Model (EDHMM) is implemented to
provide an accurate phoneme duration model. This study
is conducted on Boston University Radio New Corpus with
prosodic boundaries marked using ToBI labelling system. We
found that lengthening of the phrase final rhymes can be reli-
ably modelled by EDHMM, which significantly improves the
prosody dependent acoustic modelling. Conversely, no system-
atic duration variation is found at phrase initial position. With
prosody dependence implemented in acoustic model, pronun-
ciation model and language model, both word recognition ac-
curacy and boundary recognition accuracy are improved by 1%
over systems without prosody dependence.

1. Introduction
Does prosody help word recognition? The answer is obviously
yes for human listeners. For automatic Large Vocabulary Con-
tinuous Speech Recognition (LVCSR), the answer is not that
straightforward. Even though successful word recognition and
successful prosody recognition has been demonstrated indepen-
dently in many academic and commercial applications, no result
has been reported in literature that shows improved word recog-
nition with the help of prosody. In 1997, Kompe [1] presented
a theoretical proof stating that prosody can never improve word
recognition accuracy unless the recognizer uses prosody depen-
dent phoneme models. Based on this idea, we propose a novel
approach that models word and prosody in a unified probabilis-
tic framework in which word and phoneme HMMs are depen-
dent on prosody. Superior word recognition accuracy over base-
line systems with no prosody was obtained by our method. This
finally proves that prosody can help word recognition in LVCSR
if prosody dependence is modelled at phoneme level.
The prosody attributes that we investigated in this study is the
duration lengthening of the speech segments in the vicinity of
intonational phrase boundaries. We will first present a proba-
bilistic framework for prosody dependent word and phoneme
modelling in section 2. We will then present in section 3 some
linguistic evidences to support our motivation of modelling this
lengthening effects. In section 4, we will briefly review the Ex-
plicit Duration HMM, its training and decoding algorithms, and
the extensions we made. We will then present the experiments
and results in section 6. Finally, we will give our conclusion in

section 7.

2. Prosody dependent modelling
In this section, we describe the probabilistic framework we
propose for prosody dependent word and phoneme modelling.
The task of prosody dependent speech recognition, given a se-
quence of observed short-time vectorsX = (x1, ...xT ) of
the acoustic features, is to find the sequence of word mod-
els W = (w1, ..., wN ) and the sequence of prosody models
P = (p1, ..., pN ) that maximizes the recognition probability:

[Ŵ , P̂ ] = arg max p(X, Q, W, P ), (1)

whereQ = (q1, ..., qL) is a sequence of sub-word units, typ-
ically allophones dependent on phonetic context, andN is the
number of word and prosody symbols. (1) can be expanded as:

[Ŵ , P̂ ] = arg max p(X|Q, B)p(Q, B|W, P )p(W, P ), (2)

whereB = (b1, ..., bL) is a sequence of discrete variables de-
scribing the prosodic states ofQ. In this paper,B only takes
three possible values indicating whether an allophone is in a
pre-boundary, a post-boundary or a non-boundary position. We
will describe our definition of boundary phone in more detail in
section 5.2. When prosody is ignored as in conventional speech
recognizers, (2) simply becomes:

Ŵ = arg max p(X|Q)p(Q|W )p(W ). (3)

A prosody dependent allophoneqi with prosody statebi can
be modelled using explicit duration Hidden Markov Model
(EDHMM),

p(Xi|qi, bi) = P (Xi|Si, bi)P (Si|qi, bi) (4)

=

Ni∏
j=1

p(Xij |sij)p(dij |sij , bi)p(Si|qi),(5)

whereSi = (si1, ..., siN ) is the quasi-stationary states inqi;
Xij is the partial observation sequence occurred insij ; dij is
the duration ofsij ; andNi is the number of states inqi. Note
that in (5), the prosody state variablebi only affects the state du-
ration densityp(dij |sij , bi). The reason why we did not condi-
tion the observation probabilityp(Xij |sij) onbi in this study is
because it is not clear how much the boundary condition will af-
fect the distribution of cepstral observation vectors and whether
the effect is strong enough to be modelled by HMM.
In this study, P in (2) takes four possible discrete values



that indicates whether a wordW is phrase initial, phrase me-
dial, phrase final, or a single-worded intonational phrase. The
pronunciation modelP (Q, B|W, P ) is implemented through
prosody dependent dictionaries. In the dictionaries, the multi-
ple pronunciations of a word have equal prior chance to be cho-
sen. With the dictionaries, a prosody dependent word sequence
(W, P ) can be expanded into a prosody dependent phoneme se-
quence (Q,B) under different boundary phone definitions. The
prosody dependence is also modelled in the language model
p(W, P ). In p(W, P ), the words that are likely to appear at
boundary locations receive larger relative probability than they
do in a prosody independent language modelp(W ) trained
from the same text but with no prosody dependence specified.
It is worth noting that in this framework of prosody dependent
modelling, the number of parameters in the prosody dependent
systems are not significantly larger than those in the prosody
independent systems due to the shared observation probabil-
ity density functions (PDFs). With some slight adjustment,
this framework can be generalized to include the dependence
over other prosody variables such as phrasal pitch accents and
boundary tones.

3. Lengthening at prosodic boundaries

The lengthening of speech segments in the vicinity of prosodic
boundaries has been reported by many phoneticians. Crystal
and House [2] reported that the average durations of vowels
preceding pre-pausal word-final consonants are considerably
greater than those preceding non-prepausal word-final conso-
nants. Beckman and Edwards [3] found that final lengthen-
ing occurring at intonational phrase boundaries is a large ef-
fect that is highly consistent across speakers and rates. This re-
sult implies that lengthening around boundaries of intonational
phrases and higher prosodic domains can be reliably modelled
by boundary dependent duration model. Wightman [4] dis-
covered that segmental lengthening in the vicinity of prosodic
boundaries is mainly restricted to the rhyme (vowel nucleus and
any coda consonants) of the syllable preceding the boundary.
In addition to these results, Fougeron and Keating [5] found
that both initial consonants and final vowels at the edges of
prosodic domains have more extreme lingual articulations than
they would be in other contexts. This suggests that lengthening
might affect the duration of speech segments both preceding
and succeeding prosodic boundaries. It is interesting to investi-
gate, from the speech recognition point of view, where exactly
the lengthening happens and how much it affects the speech
recognition. In order to precisely model the boundary length-
ening effect, we implemented speech recognizers that explicitly
model the duration probability density.

4. Explicit duration HMM

4.1. Duration density models

In standard HMM, the duration of a state is an implicit random
varaible with an exponential probability density function (PDF).
This does not provide a correct representation of the tempo-
ral structure of state durations. Some researchers found that
the state transition probabilities have ignorable effects on word
recognition accuracy. This is only partially true when prosody
is not considered. In the context of prosody dependent recogni-
tion, duration modelling has a direct impact in phoneme recog-
nition accuracy, as we will show in section 6.
Two algorithms has been proposed in history that explicitly

model duration of HMM by extending the underlying Markov
chain to a semi-Markov chain. Ferguson [6] proposed an
Estimation Maximization (EM) algorithm to estimate a non-
parametric probability mass function (PMF) for the state dura-
tion. Levinson [7] proposed the continuously variable duration
HMM (CVDHMM) in which the state duration probability is
modelled as a continuous gamma density function. Compar-
ing with Levinson’s algorithm, Ferguson’s algorithm requires a
large amount of training data but has no prior assumption on the
parametric form of the duration density function. In addition,
Ferguson’s algorithm only requiresO(NT (N +D)) operations
in training, as contrast toO(N2TD2) operations in Levinson’s
algorithm, whereN is the number of states in the HMM,T is
the total number of observations in the example, andD is the
maximum allowed state duration. Due to this advantage, Fergu-
son’s algorithm is chosen to be implemented in our system.

4.2. Training and decoding algorithms

Due to the limitation of space, we can not provide a complete
review of Ferguson’s algorithm in this section. Instead, we
present the extensions we made that are useful for applying this
algorithm in LVCSR.
The algorithm Ferguson proposed only include the re-
estimation formulas for discrete observation PMF and single
Gaussian observation PDF. For mixture Gaussian observation
PDF, following equations can be used:

γr
t (j, k) = γr

t (j)
cjkN (Or

t , µjk, Σjk)∑M
m=1 cjkN (Or

t , µjk, Σjk)
, (6)

whereγr
t (j) is the posterior probability of statej in utterance

r; γr
t (j, k) is the posterior probability of thekth mixture com-

ponent;Or
t is the observation vector att; andµjk andΣjk are

the mean and variance of thekth mixture component. Thekth

mixture weightcjk be re-estimated as:

ĉjk =

∑R
r=1

∑Tr
t=1 γr

t (j, k)∑R
r=1

∑Tr
t=1

∑M
k=1 γr

t (j, k)
. (7)

The decoding algorithm of EDHMM has a form that is slightly
different from the standard Viterbi algorithm due to the nature
of the semi-Markov chain. In analogy to forward and back-
ward probabilities, the maximum posterior probabilitiesδ∗t (j)
andδt(i) can be computed recursively:

δ∗t (j) = max
i

δt(i)a(j|i), (8)

δt(i) = max
τ

δ∗t−τ (i)d(τ |i)b(Ot−τ+1...Ot|i). (9)

This existence of (9) increase the computation by(D + N)/N
times over the standard Viterbi algorithm, provided that all the
arguments required in (9) are stored in the memory.
The above training and decoding algorithms are implemented in
the Hidden Markov Toolkit (HTK). Due to the efficiency of the
training algorithm, it is practical to train EDHMM on a large
speech corpus in a reasonable amount of time. The maximum-
allowed state durationD is chosen automatically by restricting
the minimum probability value of the duration PMF. The Token
Passing algorithm in HTK is modified to implement the above
semi-Markov Viterbi decoding algorithm.

5. Experiments
5.1. Database

As one of a few databases that is designed for study of prosody,
Boston University Radio News Corpus consisting of recordings



What are the Boundary Phones? size
IND No boundary phones 65
FV Final Vowels 89
FC Final Consonants 91
FVFC Final Vowels and Final Consonants 105
IV Initial Vowels 87
IC Initial Consonants 83
ICIV Initial Consonants and Initial Vowels 102
ICFV Initial Consonants and Final Vowels 98
IPFP Initial and Final Consonants and Vowels153

Table 1: The definitions of boundary phones for prosody-
dependent analysis.

of broadcast radio news stories is used in our study. The record-
ings are a combination of original radio broadcasts and labo-
ratory broadcast simulations. Files have been transcribed, seg-
mented, and hand-labelled using ToBI prosodic labelling sys-
tem. In ToBI, break indices are marked to indicate the degree of
decoupling between each pair of words. The intonational phrase
boundaries are marked by break index of 4. For simplicity, we
only distinguish two level of breaks. Breaks with indices higher
than 4 are labelled as B4 and breaks with indices lower than 4
are labelled as B0. The training and test sets consist of 301 ut-
terances (about 2 hours of speech sampled at 16Khz) read by
five professional announcers (3 female, 2 male).

5.2. Boundary dependent HMMs

In all the experiments, Context-Independent (CI) HMM with
3 non-skipping states are used to model both the boundary
phones and non-boundary phones, and the observation PDFs are
modelled by Mixture Gaussian with 3 components. SPHINX
phoneme set [8] is adopted to form the baseline prosody-
independent set with some of the low frequency phonemes
merged. The feature stream consists of 15 MFCC coefficients,
energy, their delta coefficients. In prosody-dependent experi-
ments, the size of phoneme set differs under different types of
prosody dependence. Table 1 listed all the prosody dependent
phoneme sets we used.
In our labelling system, symbol B4 is used as prefix or postfix to
mark the positions of words in the intonational phrases. A word
W is labelled as WB4, B4 W or B4 W B4 if it is phrase final,
phrase initial, or a single worded phrase (such as ”Well”, ”Ini-
tially”). The prosody dependence can be propagated from word
level to the phoneme level through prosody dependent dictio-
naries. For example, in FVFC, the final vowels and final conso-
nants in a phrase final word WB4 are appended with theB4
postfix while other phones in this word remain the same. Simi-
larly, in IPFP, the initial consonants and initial vowels in B4W
or B4 W B4 are attached with prefix B4, and the final vow-
els and final consonants in WB4 and B4W B4 are appended
with postfix B4. Under these definitions, different types of
prosody-dependent transcriptions and dictionaries marking dif-
ferent prosody dependent words and phonemes are created.

6. Results and discussion
To compare the performance of EDHMM with standard HMM,
we conducted phoneme recognition experiments on TIMIT
database using standard 48 phoneme sets modelled by HMMs
of 3 non-skipping states and 3 mixture Gaussian. The phoneme
recognition accuracy under no grammar condition is improved

HMM EDHMM
Phone Corr.(%) 64.82 64.84
Phone Acc.(%) 50.98 51.86

Table 2: Phoneme Recognition experiments on TIMIT.

HMM EDHMM
IND PD IND PD

FV 25.70 33.93 26.10 34.36
FC 13.22 27.4 13.61 28.02
FVFC 3.13 24.61 3.77 25.36
IC 34.90 25.53 35.28 25.92
IV 34.95 30.09 37.15 30.77
IVIC 33.15 19.10 33.57 19.71
ICFV 23.88 22.89 24.28 23.20
IPFP 1.71 12.19 2.35 12.91

Table 3: Phoneme Recognition Accuracy with boundary and
non-boundary phonemes counted as distinct symbols.

by .9%, as shown in table 2.
To measure the effectiveness of prosody dependent acous-

tic modelling, we conducted phoneme recognition experiments
on Radio New Corpus with no grammar used. Table 3 shows
the percent phoneme recognition accuracy (PRA) for various
types of boundary phone models as defined in Table 1. Bound-
ary phones and non-boundary phones are counted as different
symbols in this result. Note that the figures row-wise are not
comparable because they are measured under different phoneme
sets of different sizes. The figures in column IND are the per-
cent PRAs achieved with IND phoneme set in which bound-
ary and non-boundary phones are different logically but are the
same physically; while the numbers in column PD are the per-
cent PRAs achieved with the prosody dependent phonemes hav-
ing untied duration PMFs. Note that the boundary phones and
non-boundary phones only differ in their duration PMFs in our
study, hence the total number of parameters of these prosody
dependent models is not significantly increased over that of the
baseline IND models. Compare column-wise, we see that the
PRAs are drastically improved in FV, FC and FVFC for both
HMMs and EDHMMs. This indicates that the lengthening in
phrase final rhymes can be reliably modelled by HMM. Con-
versely, PRAs degrade in all the sets that contains phrase ini-
tial phones. This indicates that there are no systematic dura-
tion variation in the phrase initial positions that can be reli-
ably modelled by HMM. It can be concluded from these results

HMM EDHMM
Corr. Acc. Corr. Acc.

IND 52.60 36.77 52.59 37.15
FV 52.64 36.81 52.58 37.25
FC 52.62 36.73 52.74 37.10
FVFC 52.67 36.76 52.79 37.19
IC 50.55 34.64 50.79 34.24
IV 50.6 34.68 50.69 35.26
IVIC 48.59 32.69 48.89 33.50
ICFV 52.65 36.63 52.79 37.18
IPFP 52.61 36.43 52.80 37.05

Table 4: Phoneme Recognition with boundary and non-
boundary distinction ignored.



AM LM HMM EDHMM
Corr. Acc. Corr. Acc.

IND IND 76.17 74.89 76.99 75.15
IND PF 76.75 76.36 77.56 75.60
IND PI 77.36 75.40 77.52 75.40
IND PP 77.40 75.60 77.56 77.68

FVFC IND 76.17 75.03 76.58 75.23
FVFC PF 76.83 75.44 77.44 75.52
FVFC PI 77.36 75.32 77.44 75.44
FVFC PP 76.95 75.60 77.28 75.85

Table 5: Word Recognition using IND and FVFC models in
combining with IND, PF, PI and PP language models.

that duration is very important for prosody dependent phoneme
recognition. Table 4 shows the net phoneme recognition results
in which all B4 prefixes and postfixes are ignored in counting
the results. Now, the number row-wise is comparable and we
see that phoneme recognition accuracy has been improved in
all phrase final type of phoneme modelling with maximum im-
provement .5% appearing in FV models.
To measure the overall performance of prosody dependent
recognition, we conducted word recognition experiments and
boundary recognition experiments using two types of Acous-
tic Models (AM) and four types of bigram Language Models
(LM). The two types of acoustic models we used are IND and
FVFC as we have discovered in Table 3 that FVFC encodes the
best acoustic prosody dependence. The four types of language
models are denoted as IND, PF, PI and PP. Here, IND denotes a
LM that is completely prosody independent; PF denotes a LM
that distinctively models phrase final words; PI denotes a LM
that distinctively models the phrase initial words; and PP is the
LM that has the maximal prosody dependence in which all 3
types of words: phrase medial, phrase initial and phrase final
are distinguished. As can be seen in Table 5, the word recog-
nition accuracy (WRA) of FVFC+PP+EDHMM has improved
about 1% over the baseline system IND+IND+HMM. The im-
provement bought by acoustic modelling is not very evident in
this results because the LM models has dominate effectiveness
on this database due to the repetitive sentences in training and
testing set. We would expect the effectiveness of acoustic mod-
elling to be more evident on larger unbiased database.
Table 6 and Table 7 show two types of boundary recogni-
tion results. In phrase initial boundary recognition, we create
boundary transcriptions by replacing B4W and B4W B4 with
B4 and replacing other words with B0. Similarly in phrase
final boundary recognition, boundary transcriptions are cre-
ated by converting WB4 and B4W B4 to B4 and all other
words to B0. Intonational phrase boundary recognition is po-
tentially a difficult task because only less than 1/5 of the word
boundaries are intonational phrase boundaries. Simply setting
all word boundaries to be B0 will give an accuracy of over
80%. Nevertheless, we achieved over 1% improvement in both
types of boundary recognition in FVFC+PP+EDHMM over the
IND+IND+HMM.

7. Conclusions
In this paper, a prosody dependent speech recognizer that mod-
els prosody and word in a unified probabilistic framework is
proposed. We find that in radio news, the duration lengthening
in phrase final syllable rhymes can be utilized to improve acous-
tic modelling. The prosody dependent speech recognition we

AM LM HMM EDHMM
Corr. Acc. Corr. Acc.

IND IND 84.55 84.47 84.72 84.43
IND PF 84.63 84.43 84.63 84.43
IND PI 87.94 85.33 88.07 85.37
IND PP 88.07 85.33 88.07 85.37

FVFC IND 84.59 84.43 84.72 84.43
FVFC PF 84.63 84.43 84.63 84.47
FVFC PI 87.82 85.37 87.90 85.41
FVFC PP 88.11 85.49 88.25 85.49

Table 6: Phrase Initial Boundary Recognition.

AM LM HMM EDHMM
Corr. Acc. Corr. Acc.

IND IND 84.55 84.47 84.72 84.43
IND PF 84.63 84.43 84.63 84.43
IND PI 84.68 84.55 84.76 84.47
IND PP 87.86 85.33 88.97 85.53

FVFC IND 84.59 84.43 84.59 84.47
FVFC PF 84.63 84.43 84.63 84.47
FVFC PI 84.68 84.55 84.76 84.47
FVFC PP 88.15 85.49 88.48 85.62

Table 7: Phrase Final boundary Recognition.

proposed improves both word recognition accuracy and bound-
ary recognition accuracy by 1%.
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