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Abstract

Multimeodal dislog syskeims research ak the University
of Mlinoiz =eels to develop alporithims and systems
capable of robustly extracting and adaptively com-
bining information aboat the speech and gestures of
& have user in a noisy environment This paper will
review our recent work in seven fields related to mul-
timodal semantic understanding of speech: andiovi-
gl speech recognition, mnlkimodal nser state recog-
nition, gesture recognition, face trading, binairal
bearing, hoize-robust and high-performance acoustic
teature design, and recognition of prosody

1 Introduction

The purpose of this paper is to swrumarize ongoing
multimeodal speech and dialog recognition research
at the University of lincis. A multimodal spesch
recognition systerm can be described in two distinet
stages: (1) robust andiovisual feature extraction, and
(2) speech and user state recognition using dynamic
Bayesian networks. Features are extracted from ao-
dicwisual input in order to optimally represent pho-
petic, vizemic, gestural, and prosodic information.
Our specific ongoing research projects include bin-
aural hearing (array processing on a mobile plat-
form), biomimetic noise-robust acoustic feabure ex-
traction, maximum mutoal information acoustic fea-
ture design, and face tracking. Cuostomized Dynamic
Bayesian networks have been designed for three dif-
ferent recognition tasks: audicvisual speech recog-
nition using coupled HWWs, user state recognibion
using hierarchical Hhihis, and recognition of speal-
ing rate using hidden-mode explicit-duration acoustic
Hhihs,

Iimage and Speech Processing research ab the Uni-
versity of Ilincis is currently tested in two ongoing
research probotype eavironments. The first research
prototype environment is an experimental compubing
facility for teaching children about physics. The sec-

ond research environment is an antonomeous robok,
My, who acquires language through the semantic as-
gociation of andio, visual, and haptic sensory daba
Prior to implementation on one or both of these plak-
torms, most of our algorithims are tested using stan-
dard or locally acquired datasets.

2 Pre-Processing

2.1 Binaural Hearing

Our research on binaoral hearing addresses the ex-
traction of noise-robust andic from a two-mi cmophone
array tmounted on a physically meobile plabform (&
languagelearning anbonomons robot). The source
localization algorithm is based on a two channel
Griffiths-Jim beamformer [3) and a new phase un-
wrapping algorithm for accurate estimabion of time
difference of arrival measures [8]. The new phase un-
wrapping algorithm is trained using many messure-
ments of TD OAs in order to create an accurabe spa-
tial map of TDOA patbern as a function of arrival
azimuth and elevation. These can then be used both
to cancel interfering noise and to get a faithful rep-
resentation of the desired speech signal. Preliminary
results show thak a speech signal can be accurabely
located in noisy laborabory room within a few mil-
liseconds and with ten degree accoracy at a distance
of 2-4 meters (acoustic far field).

In the current implementation, detection of a
gpeech signal trigeers physical robakion of the receiver
platform (bhe robot’s “head”) so that it faces the pri-
mary tallier. By pliysically aligning the “head” of the
robot with the direction of pritmary source arrival, we
are able to use extremely efficient off-axis cancellation
algorithms for improved SR [9].

2.2 Acoustic Features

Standard speech recognition features (including
MFCC, FLF, and LPCC) result in isolated digit



racogrinn raemin ahka o

Figure 1: WER.: isolated digit recognition in white
toise with two standard feabture sets, MFCC and
LPCC, and two novel feature sebs, LPCC with wice
index and with frame index (from [6]).

recognition error rates of approximately 0% at 104B
SR, and nearly §0% at 0dE SR, In 1992, Med-
diz and Hewitt propesed a biomimetic method for
recognition of woiced speech in high noise eaviron-
ments [10]. Meddis and Hewitt proposed filbering
a boisy speech sighal into many bands, compubing
the auntocorrelation function Ay () in each sub-band,
and then estimatbing the speech autocorrelabion A(r)
by optitnally selecting and adding together the high-
SMR sub-band antocorrelations. In our work [6], we
have replaced Meddis and Hewitt's optimal selection
algorithim by an opbimal scaling algorithim. Specifi-
cally, we estimate the sub-band SR »), using & sban-
dard pitch prediction coefficient, ie.

Speedh Energy in Band k' Fp{Tg)
vy = =
* Total Energy in Band k Ry (D)

(1)

where Ty is the globally optimum pitch period. The
maximiun likelihood estimate of the noize-free speech
signal antocorrelation iz then

R(r) = uin(r)

4

In izolated digit recognition experiments, the use of
equations 1 and 2 reduced word error rate by meore
than a factor of three in white noise at 104E thirough
-104E, and by more than a fackor of two in babble
noise at the same SMYRs (Figure 1).

The phonological features implemented at a speech
landimarls influence the acoosbic spectrum ab dis-
tances of 50-100ms [4, 19). Complete representabion
of & 100ms spectrogram requires a 120-dimensional

Mo LM Phaone Bigram
Features | 35dE | 10dE | 35dE | 10d4E
LPCC 56 40 50 16
MFCC 58 12 63 18
FM 58 12 62 16
MMTA 50 13 L] 19

Table 1. Phonemerecognition correckness in four con-
ditionz. Features sedected using a maximuom mobaal
information criterion (MMITA) provide superior per-
formance in all four sonditions.

acoustic feature vector. It is not possible to mecu-
rabely train observation PDFs of dimension 120 using
existing data sets, but it is possible to select & sub-
vecbor using a quantitative optimeality oiterion. In
our research, we zelect a 30 dimensional feature sub-
vector from a lisk of 160 candidate features in order
to optimize the mntual informeation between features
and phoneme labels [12]. Optimality is determined
using & clean speech dababase (TIMIT) with no lan-
guage maodel, but the resulting optimal ity generalizes.
Asg shown in Table 1, the resulting MMTA (maximum
mutual information acoustic) feature vector outper-
forms all sban dard feabure vectors ander akb least thiree
conditions: in quiet and at 10dB SR, withoat alan-
guage mode and with an optimized phoneme bigran.
Larger improvements may be obtained oy testing the
8-10 best feature vectors generated during the muatual
nformabion search. The best recognition accuracy,
cbtained using the feature set with second-best mu-
tual information, was 62% with no language model
in quiet conditions.

2.3 Face Tracking

Research has shown that facial and vocal-tract mo-
tions are highly correlabed during speech produac-
tion [20]. Speech recognition using both andio fvisual
feabures is shown to be more robust in noisy eaviron-
ments [5]. Analysis of non-rigid human facial motion
iz & key component for acquiring visual features for
audio/visual speedh recognition.

It the past several years, research in our group has
led to a robust 3D facial motion tracking systern [16].
A 3D non-rigid facial motion model is manually con-
structed based on piecewise Bezier volume deforma-
tion model (PEVD). It is used to constrain the noisy
low-level optical flow. Thetracking is done in a mualti-
resolution manner such that higher speed could be
achieved. It runs at & fps on an 83GT Onyx? machine.
This tracking algorithim bas been successfully used for
andic-visual speech recognition and bimodal emotion
recognition.
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Figure 2:

Demonstration of our face tracking system.

2.4 Gesture Hecognition

Hand gestures are capable of delivering informakion
not presented in speech [14]. Caontrolling gesture can
be used to provide cormumands to the system. Mav-
igakion gestures provide informakion for manipulat-
ing virtual objects, and for selecting point objects or
large regions cn the screen. Conversational gesbures
provide subtle cues to sentence meaning in normal
hman inberaction. Automated hand tracking and
gesture recognition can hep improve the performan ce
of human-machine interface.

We have investigabed both appearance-based ges-
ture recognition {using neural networl-based pab-
tern recognition techniques) and model-based gesture
recognition [18, 17]. In model-based recognition, the
configuration of a hand model is first determined by
providing a seb of joint angle parameters. The 2D
projection of this hand model, determined by the
translation and orientation of the model relative to
a viewing portal, is compared with the hand image
from input video. Estimate of the correct input hand
configuration is debermined by the best matching pro-
jection. A complete description of the global hand
posibion and all finger joint angles requires specifica-
tion of 21 joint angles Using both known anabom-
ical constrainte and PCA to reduce dimensionality,
we can initially reduce the dimensionality of the ges-
tural description fraom 21 to ¥ independent dimen-
sions while kesping 9% of the information. In this
F-dimensional space, it is possible to define 28 ba-
siz configurations, consisting of the configurations in
which each finger is either fully folded or completely
extended. A close examination of the motion trajec-
tories between these basis sbabes shows that nabural
band arbiculabions seem to lie largely in the linear

manifold spanned by pairs of basis states. We be-
lieve that, based on these preliminary results, it will
be possible to map all observed gestures into a low-
dimensional gestural manifold, resulbing in efficient
and accurate gesture recognition.

3 Dwynamic Bayesian Networks

3.1 Lip Reading

The foeus of our regearch in lip reading is & novel ap-
proach to the fusion problemn in andio-visnal speech
processing and recognition. Our fusion algorithm is
built npon the frameworlk of coupled hidden Marloow
models (CHMMs). CHWMMMWMs are probabilistic in-
ference pgraphs that have hidden Markeow meodels
(HhMs) as sub-graphs. Chains in the correspond-
ing inference graph are coupled through matrices of
conditional probabilities modeling temporal depen-
dencies between their hidden state variables The
coupling probabilities are both cross chain and cross
time The laker iz essential for capturing tempeoral in-
fluen ces between chains. In a bimodal speedh recog-
nitien systern, two-chain CHWMMs are deploved, with
one chain being associated with the acoustic obser-
vabions, the other with the visual feabures Tnder
this frameweorl:, the fusion of the two modalities balkes
place during the dassification stage The particular
topology of the CHWMM ensures that the learning and
classification are based on the andio and visual do-
mains jointly, while allowing asyndironies betwesn
the two information channels.

It essence, CHMMWs are directed graphical models
of stochastic processes and are a special type of Dy-
namic Bayesian Networks (DEINs). The DENs gen-
eralize the HWhiz by representing the hidden states
as sbabe variables, and allow the stabes to have com-
plex interdependencies. The DEBEIN point of view fa-
cilitates the development of inference algorithims for
the CHMM= Specifically, two inference algorithims
are proposed in thiswork. Both of the algorithims are
exarct methods The firsk is an extension of the well-
known forward-badiward algorithm from the W
literatures. The second is a strabegy of converting
CHMMWM s to mathematically equivalent Hhibis, and
carrying out learning in the transformed models.

The benefits of the proposed fusion scheme are
confirmed by & series of preliminary experiments
on andio-visual speech recognition.  Visual fea-
tures based on lp geometry are used in the exper-
iments. Furthermore, comparing with an acousbic-
only ASH system trained using only the audio dian-
el of the same dataset, the bimodal sysbem consis-
tently demonstrabes improved noise robustness across



EMR 10dE | 204E | 304E
A 4.03 | 4361 | 23.10

W 4205 [ 1295 | 1205
A4V | 10b8 | 727D | 0971
CHMM | 3532 | 8658 | 03 32

Table 2: Result of experiments in andiovisual speech
recognition (messured in %word accuracy). A indi-
cabes the andic-only systern; V' indicabes the visual-
only systern;, A+V indicates a bimodal sysbem using
early intepration; and CHWM indicates the CHRIM-
based system.

a wide range of SITR levels.

3.2 PFProsody

Our approach bto the recognition of prosody is the
use of a “hidden mode variable” [13] to condition the
explicit doration PDFs of a CYDHMM [7]. In our
prototype algoritlun, the state space consists of par-
allel phonetic state variables (g:) and prosodic sbabe
variables (k). The dwell time of state g; is a random
variable d, with PDF depending p{dg|g,k). At the
end of the specified dwell time, the phonetic variable
always cdhanges state (no self loops), but the prosodic
sbabe variable may or may not change stabe. Thus,
for example, if (& cslow, mediwm, fast) represents
gspealing rabe, it may be reasonable to allow & bo
change sbate ab any word boundary with a small prob-
ability.

In order to allow efficient experiments, we have
modified HTE to male use of Ferguson's EM al-
gorithm for explicit-duration HWMs [1, 2. Fergu-
gon's algoribthm is an order of magnitude faster than
most algorithims for the explicit-duration Hhibis.
The compuotational complexity of the algoritlim is
QINT(N 4+ T}), where N is the nunber of stabes,
T iz the number of frames in the input signal, and
{O({N3T))} is the complexity of an HMM without ex-
plicit duration. The forward algorithm computes
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3.2 User State Recognition

Integrabion of a large number of sources for the puar-
pose of multimodal user-stabe recognition can be ac-
complished wusing a hierarchical dynamic Bayesian
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Figure 3: Architecture for detecting events in the of-
fice scenario

networle (figure 3). In a hierarchical DB, each
modality (audio, lip reading, gesbure, and prosody)
iz modeled using a modality-dependent HWW. Each
modality-dependent HMM is searched in order to
generate the I transcriptions that best match the
cbzerved data in the given modalify. The likelihood
of each transcription is then eshimaked using a con-
strained forward-backward algorithim, generating the
probability of state residency during every frame.
These probabilities are fed forward to the supervisor
HWMW, which integrates them to determine & single
transcription of the sentence in order to maximize the
a posteriori transcription probability. By imposing a
pricr on the probability distributions learned by the
model for the purpose of increasing conditional en-
tropy, we have demonstrabed a 10% incease in user
state classification performance [15, 11].

4 Conclusions

Our research is intended to elucidate both the the-
cretical and the practical requirements for effective
mualtimodal speech understanding sysbems. The use
of speech in multimadal systems will increase our the-
cretical nnderstanding of the problems of sensor fu-
gsion and representations of moltimodal signals. In-
creased theoretical understanding, in turn, will en-
able us to produce practical results thab can be di-
rectly used in state-cf-the-art speech recognition sys-
temms and as part of larger systems for advanced
human-machine communicakion.
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