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On-Line and Off-Line Computational Reduction
Techniques Using Backward Filtering in CELP
Speech Coders

Mark Johnson and Tomohiko Taniguchi

Abstract—In this correspondence, we review the backward-filtering
algorithm, and give a compact proof of its validity using matrix nota-
tion. We will review the relation between backward filtering and off-
line perceptual weighting in sparse-codebook CELP, and will show how
a combination on-line/off-line parallel weighting algorithm can be used
to reduce the search complexity of an overlapped sparse codebook by
30% to 50%.

I. INTRODUCTION

Off-line perceptual weighting, and the related backward-filtering
algorithm, were originally proposed in simultaneous papers by
Adoul et al. [1], who coined the term “‘backward filtering,”” and
by Davidson and Gersho [2], who proposed both algorithms as an
enhancement to their sparse-vector fast search (SVFS). Section II
will review the SVFS, and show how it reduces computation by
moving all perceptual weighting calculations off-line with respect
to the VQ codebook search. Section III will give a brief derivation,
in matrix notation, of the backward-filtering algorithm, and will
describe its relation to the SVFS. Finally, Section IV will focus on
a particular CELP coder: the Department of Defense 4.8 kb/s
standard coder, as it was originally proposed [3]. Since the DoD
coder uses an overlapped codebook, normal on-line perceptual
weighting is much more efficient than off-line weighting. We will
therefore describe a combined on-line/off-line algorithm, using
backward-filtering, which yields a 30% computational reduction in
the DoD search complexity.

II. OFF-LINE PERCEPTUAL WEIGHTING

Fig. 1 shows the structure of a typical CELP speech coder, ca-
pable of representing most of the algorithms in current use. As
shown, a typical CELP coder processes the input speech signal S
before vector quantizing it, first by filtering it to emphasize the
perceptually important frequency bands, and second by removing
the pitch periodicity using a long-term predictor of some sort, usu-
ally a closed-loop *‘adaptive codebook’” predictor [4] as shown in
the figure. The pitch-removed residual signal is then used as the
“‘target vector’” X for a weighted-squared-error gain-shape vector
quantizer based on a stochastic codebook of more or less uncorre-
lated random codevectors.

The perceptual weighting filter in most CELP coders consists of
an LPC analysis filter of order Np, A(2), in series with a weighted
LPC synthesis filter, 1/A4'(z), where

Np Np
Az) =1 — ‘Zl az, A@=1- 21 vz, v =009

2.1

The codevectors C are designed to model the noise-like character-
istics of the unweighted LPC residual signal. Because of this, find-

Manuscript received March 19, 1990; revised February 29, 1992.

M. Johnson was with the Speech Signal Processing Group, Fujitsu Lab-
oratories. Ltd., Nakahara-ku, Kawasaki 211, Japan. He is now with the
Speech Group, Research Laboratory for Electronics, M.1.T., Cambridge,
MA 02139.

T. Taniguchi is with the Speech Signal Processing Group, Fujitsu Lab-
oratories Ltd., Nakahara-ku, Kawasaki 211, Japan.

IEEE Log Number 9201058.

ing the optimum codevector involves filtering each vector C with
the weighted LPC synthesis filter, 1/4'(z), to create a weighted
code vector.

Passing an N-sample vector C through an IIR filter with an initial
state of zero, such as 1/4'(z), gives the same result, assuming
proper handling of the filter memory at frame boundaries, as mul-
tiplying C by the FIR filter matrix

hy 0o --- 0
hy h e 0

H= 2.2)
Iy hyoy ol

where h; is the ith sample of the impulse response of 1/4'(2) [2].
Since these two forms are functionally equivalent, we lose nothing
by thinking of the filtering operation as a matrix multiplication, and
by writing the weighted codevector as a matrix product HC. This
gives us the opportunity to manipulate the weighting filter, in our
equations, as if it were a triangular Toeplitz matrix, even if the
actual implementation of the filter is IIR.

If our coder is capable of quantizing the stochastic codebook
gain g at a close approximation to its optimum value, then choosing
a code-vector C to minimize the weighted quantization error, E =
X — gHC, involves maximizing the function F(X, C) according to
the block diagram in Fig. 2, where F(X, C) can be written as

Ric

FX, C)=—— 2.3)
RCC

Ryc = X'(HC),  Rcc = (HC)'(HC). (2.4)

The correlation term Ry and the energy term R, as defined above,
both require a vector product involving the perceptually weighted
code vector, HC, as shown in Fig. 2.

If the weighting filter can be manipulated as a matrix, then a
simple expansion of (2.4) will give the following:

Ryc = (HCYX = C'(H'X) = C'Z 2.5)

Ree = (HC)'HC = C'(H'H)C = C'TC. (2.6)

In effect, (2.5) and (2.6) show how we can implement the percep-
tual weighting operation off-line, by *‘weighting’” X and H, instead
of the codevectors C. This potential for off-line computation is a
property of the correlation operator, and is independent of the
structures of H, X, or C. Unfortunately, the weighted autocorre-
lation C'T'C, which must now be computed on-line, will require
twice as much computation, in the general case, as the matrix mul-
tiplication HC, simply because H is lower triangular, while T is
not. This means that even if it is always possible, (2.6) is often not
practical.

Off-line filtering is often practical, however, if C is sparse, that
is, if many of its samples are zero valued. The complexity of the
FIR product HC decreases in direct proportion to the sparsity of C
(defined as the percentage of nonzero samples), while the com-
plexity of C'T'C decreases as the square of the sparsity. The cor-
relation CT'C will therefore be more efficient than the product HC
for almost any code vector of 50% or lower sparsity (Section v
will discuss an exception). If C is sparse, (2.5) and (2.6) describe
the enhanced sparse-vector fast search proposed by Davidson and
Gersho [2].

Off-line computation is also valid if the codebook search crite-
rion (2.3) is modified to allow simultaneous optimization of the
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Fig. 2. Standard CELP: Stochastic codebook search.

adaptive and stochastic codebook gains. Equations for this algo-
rithm are given elsewhere ([6], for example), and will not be re-
peated here, but the most computationally significant new opera-
tion is the correlation of each weighted stochastic code vector with
a previously chosen weighted pitch. The perceptual weighting in-
volved in this operation can also be moved off-line, exactly as
shown in (2.5):

Rec = (HC)'(HP) = C"(HHP). @7

III. THE BACKWARD-FILTERING ALGORITHM

The backward-filtering algorithm is an interesting technique for
efficiently computing the off-line matrix multiplications shown in
(2.5)-(2.7). A derivation is given in [1]; we will give a more com-
pact derivation, in matrix notation.

It can be easily shown that the product F’G, for any matrices F
and G of dimension, say, n X mand n X p

”fn S & " &y
F'G =
Lom " fom & " 8w
['E fi8a : Efligip
= 3.1
LE fingi = Efingip

can be computed by transposing F about its antidiagonal (F *), time
reversing G (G,,), multiplying the two, and time reversing the re-
sult:
Jom 0 fim R
FiGu_z Vee e ee e e
S S g T 8

Muttiplication by H, however, is functionally equivalent to fil-
tering by 1/A4(z), so that we can implement the right side of (3.4)
and (3.5) by filtering X,, and the columns of H,, with an IIR filter.
In a normal CELP coder, the order of the IIR filter 1 /A'(z) is about
one fourth of the dimension of H; under these circumstances, we
can compute the matrix multiplications H’X and H'H with 50%
fewer scalar multiplications if we use IIR backward filtering. If
H'X and H'H are computed off-line, even a savings of 50%
amounts to only about half a multiplication per code vector, mak-
ing IIR backward filtering several orders of magnitude less impor-
tant than the original decision to take perceptual weighting off-line.
For convenience, however, the next section will assume that any
off-line multiplications of the form H”X are computed using IIR
backward filtering.

IV. BACKWARD FILTERING IN OVERLAPPED-CODEBOOK CELP

In general, off-line perceptual weighting is profitable for code-
books of 50% or lower sparsity. Some coders, however, use com-
putational tricks to reduce the complexity of the FIR filter HC, and
many of these tricks can not be used in the same way with the
correlation C'T'C. In such coders, the most computationally effi-
cient codebook search may use a combination of on-line and off-
line perceptual weighting.

One such technique uses an overlapped stochastic codebook [5].
In an overlapped codebook, each code vector is a copy of the pre-
vious vector, shifted by one or two samples, and with the empty
places filled with appropriate random numbers. If this is done cor-
rectly, each weighted vector HC can be computed very efficiently
by shifting the previous weighted vector, and filtering the new sam-
ples. There is no corresponding trick for simplifying the correlation
C'TC, 50 an overlapped codebook is almost always easiest to search
using on-line FIR perceptual weighting.

A good example of a CELP coder with an overlapped codebook
is the U.S. Department of Defense 4.8 kb /s standardized coder,
as originally proposed in [3]. The DoD coder uses a stochastic
codebook constructed from Gaussian random vectors center clipped
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Fig. 3. Backward filtering and the on-line/off-line weighting calculation, in sparse-overlapped-codebook CELP.
TABLE 1

MULTIPLICATIONS PER STOCHASTIC CODEVECTOR IN SPARSE-CODEBOOK CELP: COMPUTATIONAL REDUCTION VIA BACKWARD FILTERING OF THE INPUT

Stochastic Gain Total
Codebook Optimization Ryc, Total, T'Cor Rxc, Total, Reduction
Structure Technique Filter (Rpe) Ree N =40 Filter (Rpc) Ree N =40 (N = 40)

Sparse Codebooks: On-Line Weighting Off-Line Weighting

1/4 Sparse Sequential N?/8 N N 280 N?/16 N/4 N/4 120 57%

Simultaneous N?/8 2N N 320 N%/16 N/2 N/4 130 59%

1/5 Sparse Sequential N2/10 N N 240 N2/25 N/5 N/5 80 67%

Simultaneous N2/10 2N N 280 N?/25 2N/5 N/5 88 69%

Overlapped-Sparse: On-Line Weighting Combined On-Line/Off-Line

1/4 Sparse, Sequential N/2 N N 100 N/2 N/4 N 70 30%

Shifted-2 Simultaneous N/2 2N N 140 N/2 N/2 N 80 43%

1/5 Sparse, Sequential N/5 N N 88 N/5 N/5 N 56 36%

Shifted-2 Simultaneous N/5 2N N 128 N/5 2N/5 N 64 50%

at 1.2, making them 1/4 sparse, and with a 2-sample recursive
shift between code vectors. The combination of code vector spars-
ity and overlapping reduces the complexity of filtering an N-sample
code vector from N2 /2 to only N/2 multiplications per code vec-
tor.

Regardless of the structure of the stochastic codebook, however,
the resulting filtered codevectors HC will be neither sparse nor
overlapped, so that finding the correlation and energy terms di-
rectly, as shown in (2.4), will require two full vector products, for
a full N multiplications each. In the DoD system, this means that
each of the two inner products requires twice the computation of
the entire weighting filter.

If C is sparse, however, the correlation of C with the backward-
filtered vector Z, as in (2.5), requires less than N multiplications,
in proportion to the sparsity of the code vector. This means that if
we backward filter X at the beginning of every frame, off-line, we
can use the sparsity of C to cut down the complexity of Ryc. Since
(2.6) is impractical, we still need to calculate HC on-line, and the
inner product of HC with itself to find R¢c still requires a full N
operations. What we are proposing, however, is a combination on-
line/off-line algorithm, in which both the input and the code vector
are weighted, and the vectors H'X and HC are used in parallel to
compute the correlations Ry and R as efficiently as possible, as
shown in Fig. 3.

Table I lists eight CELP coders, four with sparse codebooks, and

four with sparse overlapped codebooks. The complexity of search-
ing each overlapped codebook is listed for standard on-line percep-
tual weighting, and for the combination on-line/off-line approach
described in the previous paragraph. For comparison, the com-
plexity of searching each nonoverlapped codebook is listed using
fully on-line perceptual weighting, and fully off-line weighting, as
described in Section II. Off-line weighting of a nonoverlapped
codebook always gives a better percentage improvement than com-
bined weighting of an overlapped codebook, but the percentages
provided by combined weighting are still substantial, and over-
lapped codebooks still provide the lowest total complexities. The
DoD standard coder, with 1/4 sparsity, a 2-sample recursive shift,
and sequential optimization of the adaptive and stochastic code-
book gains, achieved a 30% computational reduction using the
combination algorithm, and, as high as this number is, it was the
smallest computational improvement achieved by any of the coders
listed.

V. CONCLUSIONS

We reviewed the enhanced sparse-vector fast search, and showed
how it can be used, with or without IIR backward filtering, to move
all of the perceptual weighting computations in a CELP speech
coder off-line with respect to the stochastic codebook search. We
then showed that fully off-line perceptual weighting is not profit-
able when searching an overlapped-sparse codebook, simply be-
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cause an overlapped codebook can be filtered very efficiently on-
line. Despite this, we discovered that backward-filtering can be used
to implement a sort of combination on-line/off-line weighting al-
gorithm, in which the sparsity of the overlapped codebook is used
to reduce the complexity of one part of the codebook search, while
the other parts remain just as they would be in a normal search with
on-line filtering.
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Construction of a Hermitian Toeplitz Matrix from an
Arbitrary Set of Eigenvalues

F. Noor and S. D. Morgera

Abstract—In this correspondence, we present a solution to the in-
verse eigenvalue problem for Hermitian Toeplitz matrices. The ap-
proach taken is to first construct a real symmetric negacyclic matrix
of order 2n and to then relate the negacyclic matrix to a Hermitian
Toeplitz matrix of order n having the desired eigenspectrum.

I. INTRODUCTION

Inverse eigenvalue problems arise often in applied mathematics;
see, for example, [1] for an excellent account of the so-called ad-
ditive and multiplicative inverse eigenvalue problems. In this work,
we are concerned with the inverse eigenvalue problem within the
context of statistical signal processing and Hermitian Toeplitz co-
variance matrices associated with weakly stationary stochastic pro-
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cesses of complex form. Specifically, we present a method for the
construction of a Hermitian Toeplitz matrix from an arbitrary set
of real eigenvalues. The problem treated is a good example of a
situation for which little intuition can be gained from the inverse
eigenvalue problem in the real weakly stationary stochastic process
case for which the covariance is real symmetric Toeplitz. This in-
verse eigenvalue problem is still unresolved for matrices of order
greater than four [2], [3], although numerical procedures do exist
(4], [5].

The approach we take is to first construct an even order nega-
cyclic real symmetric Toeplitz matrix having the desired eigen-
spectrum, where each eigenvalue, distinct or not, is repeated twice.
The negacyclic matrix of order 2n so constructed, is then revealed
to be the real matrix of a Hermitian Toeplitz matrix of order n
which has the desired eigenspectrum. We provide a brief descrip-
tion of negacyclic matrices, describe the approach, and present an
example.

II. NEGACYCLIC MATRICES

Real negacyclic matrices are defined in [7, sec. 3.2.1] as circu-
lant matrices having a change in sign for all elements below the
main diagonal. A real symmetric negacyclic matrix Q of order m
may be specified by the first row of elements, ¢’ =
[0 a1 """ gn-i),Where g, = =g, k=0,1, -+, m—1,
and the index m — k is understood to be modulo m. It is seen,
therefore, that real symmetric negacyclic matrices are a subclass
of real symmetric Toeplitz matrices.

The eigenspectrum, {N\;:i =0,1, - - -, m — 1}, of a symmetric
negacylic matrix has elements which are given by the discrete Fou-
rier transform (DFT) of §' = [qy gy« * - gu- ;@™ '], where
w ="M 6], [7], ie.,

m—1
)\! — kzo qkej(vr,/m)kej(Zﬂ/m]ik’ i=0,1, - ,m—1. %))
For a symmetric negacyclic matrix of even order m = 2n, there are
n eigenvalues given by
n—1
N=go+2 2 chosl(Zi + 1)k,
k=1 m

i=0,1, -+ ,n—-1 ()

which appear with multiplicity two; specifically, \; = N, _;_ 1,
i=0,1, -+ ,n — 1. Of course, the actual multiplicity may be
higher, depending on whether the eigenvalues of (1) are distinct or
not.

We now turn the situation around by observing that the vector
of elements g of a negacyclic real symmetric Toeplitz matrix of
order m may be obtained from a given set of n eigenvalues by use
of the inverse DFT, viz.,

n—1

i
G=- 2 Ncos— @i+ Dk, k=01, -

hi=0 m

,n—=1. (3

The DFT then becomes a simple vehicle for specifying the ele-
ments of Q given a set of eigenvalues {A\;: i =0, 1, - - -

1}.

s n—=

III. RELATION TO HERMITIAN TOEPLITZ MATRICES

The purpose of this section is to reveal the relationship that exists
between symmetric negacyclic matrices of order m and Hermitian
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