TODAY

STRING MATCHING

STRING EDIT DISTANCE

GRAMMARS

REGULAR GRAMMAR = FINITE STATE MACHINE

1. String matching

Problem: Does "which year were you lazy" contain "we"? Where?

Applications: - DNA subsequence matching
- text mining

Example: \(\bar{x}_i = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{iD} \end{bmatrix} \) \(x_{di} = \) number of occurrences in the \(d \)th word in the document \(i \) of the dictionary

Classify \(\alpha(x) = w_j \) if \(a_j x + b_j > a_k x + b_k + k \)

For \(w_j = "science fiction" \), \(a_j = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} \)

rocket
swamp
coven
computer
dragon
love
robot
Algorithm: Boyer-Moore String Matching

\[x = \text{string} \]
\[t = \text{text} \]
\[s = \text{index into } t \]

while \(s < \text{length}(t) - \text{length}(x) + 1 \),

find a matching suffix of length \(n \)

shift forward to line up \(n+1 \) characters

\[t = \text{theye lowcabwith...} \]

\[x: \quad abracababa \]

\[n+1 = 3 \]

shift:

\[abracababa \]

\[n+1 = 3 \]

"Good-Suffix Table" — stored in memory

<table>
<thead>
<tr>
<th>(n)</th>
<th>(n+1) choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>all</td>
</tr>
<tr>
<td>4</td>
<td>all</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
2. STRING EDIT DISTANCE

Problem: how dissimilar are “store” and “stop”?

Applications:

1. K-nearest neighbors, e.g., is “glasnost” a German or Russian word?
 A: Find 3 other words that minimize \(D(w, “glasnost”) \)

2. Perzen window: \(p(“glasnost” | \text{Russian word}) \)
 \[e = \frac{1}{n} \sum_{i=1}^{n} e = D(w, “glasnost”) \]

Method

\(X = [A, g, o, l, d, f, i, s, h, \diamondsuit] \)
\(Y = [A, g, o, u, r, d, \heartsuit] \)
\(\tilde{a} = \text{alignment function}: \text{maps } Y \text{ indices } \rightarrow X \text{ indices} \)

E.g., \(\tilde{a} = \{0, 1, 2, 3, 4, 9\} \) gives

\(\begin{array}{cccccccc}
& G & O & L & D & F & I & S & H & \diamondsuit \\
& G & O & U & D & & & & & \heartsuit \\
\end{array} \)

\(\uparrow R \) \quad "DELETION": element of \(X \) disappears

\(\uparrow "\text{INSERTION}" " \): element of \(Y \) inserted

\("\text{SUBSTITUTION}" " \): element changes

\(D(X, Y) = \min_{\tilde{a}} \left[\# \text{Insertions} + \# \text{Deletions} + \# \text{Substitutions} \right] \)
Alignment Matrix:

Let \(C_s = \text{cost of substitution} \)
\(C_d = \text{cost of deletion} \)
\(C_i = \text{cost of insertion} \) \(\) Must be equal if \(D(x, y) \) symmetric

\[
\text{Cost}(i, j) = C_s \left[x(i) \neq y(j) \right] + \min \left\{ \text{Cost}(i-1, j-1), C_d + \text{Cost}(i-1, j), C_i + \text{Cost}(i, j-1) \right\}
\]

\[
D(x, y) = \text{Cost} \left(\text{length}(x) + 1, \text{length}(y) + 1 \right)
\]

3. Recognizing with Grammars

Problems:

4. Is “cats chase mice” an English sentence?
5. What is \(P(\text{cats chase mice} | \text{English}) \)?

Top-level node: sentence
Non-terminal nodes: noun phrase, verb phrase
Terminal nodes: words

Diagram:

- S
 - NP
 - N: cats
 - VP
 - V: chase
 - N: mice
Sentence length = N

Non-terminals: A, B, C, D, E

Terminals: a, b, c, d, e

Chomsky's Hierarchy of Grammar

<table>
<thead>
<tr>
<th>Level</th>
<th>Type</th>
<th>Alkawate Rules</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Regular</td>
<td>A → aB</td>
<td>VP → "chase" , NP → N , S → "cats" , VP → N , N → "mice"</td>
</tr>
</tbody>
</table>

\[P(\text{cats chase mice} \mid S) = P_3 P_1 P_2 P_4 = 0.5 \]

Computational Complexity of Recognition = \(\Theta(N^3) \)

Can be re-written as a finite state machine:

\[\text{cats} / 1.0 \]
\[\emptyset / 1.0 \]
\[\text{mice} / 0.5 \]

Level 2

Context-Free Grammar (CFG)

A → BC
A → a

Examples:

\[S \rightarrow NP, VP \quad P_1 = 1.0 \]
\[NP \rightarrow N \quad P_2 = 1.0 \]
\[VP \rightarrow V, N \quad P_3 = 1.0 \]
\[V \rightarrow \text{chase} \quad P_4 = 1.0 \]
\[N \rightarrow \text{cats} \quad P_5 = 0.5 \]
\[N \rightarrow \text{mice} \quad P_6 = 0.5 \]
\[P(\text{cats chase mice} \mid S) = P_1 P_2 P_3 P_5 P_4 P_6 = 0.25 \]

Computational Complexity of Recognition = \(O(N^{3.5}) \)

Level 1

Context-Dependent Grammar

- \(ABC \rightarrow ADC \)
- \(ABC \rightarrow AaC \)

Computational Complexity = \(O(N^{\alpha}) \) for some \(\alpha \)

Level 0

Unrestricted Grammar

- \(ABC \rightarrow DEF \)

Computational Complexity = \(O(N^{\beta}) \)

Training a Regular Grammar

Given bracketed training data:

- \(x_1 = \text{cats chase mice} \)
- \(x_2 = \text{dogs chase cats} \)

\[\hat{P}_{ML} (\text{dogs, VP} \mid S) = \frac{N(S \rightarrow \text{dogs, VP})}{N(S)} = \frac{1}{Z} \]

\[\hat{P}_{ML} (\text{chase, NP} \mid \text{VP}) = \frac{N(\text{VP} \rightarrow \text{chase, NP} \mid \text{VP})}{N(\text{VP})} = \frac{2}{Z} \]