Problem 1 (3 points)

The impedance of an acoustic wave is the ratio of pressure divided by velocity,

\[Z = \frac{P}{U} \]

where \(P \) is in Pascals, and \(U \) is in meters/second. What are the units of \(Z \)?

Problem 2 (5 points)

As a pure tone sounds out in the concert hall, the air pressure around my ears oscillates according to:

\[p(t) = 0.1 \cos(200\pi t) \]

Plot one full period of \(p(t) \), and one full period of \(\frac{dp}{dt} \) (you may put these plots on the back of this piece of paper if you like). Give the period and the amplitude of each of these two waveforms.

Problem 3 (2 points)

Plot the function \(x(t) = e^{t \ln(2)} \), for \(0 \leq t \leq 2 \). You may plot this function on the other side of this piece of paper if you like.