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Abstract

Discovering word-like units without textual transcriptions is an
important step in low-resource speech technology. In this work,
we demonstrate a model inspired by statistical machine trans-
lation and hidden Markov model/deep neural network (HMM-
DNN) hybrid systems. Our learning algorithm is capable of dis-
covering the visual and acoustic correlates of K distinct words
in an unknown language by simultaneously learning the map-
ping from image regions to concepts (the first DNN), the map-
ping from acoustic feature vectors to phones (the second DNN),
and the optimum alignment between the two (the HMM). In the
simulated low-resource setting using MSCOCO and Speech-
COCO datasets, our model achieves 62.4 % alignment accuracy
and outperforms the audio-only segmental embedded GMM ap-
proach on standard word discovery evaluation metrics.

Index Terms: unsupervised spoken word discovery, multi-
modal learning, language acquisition, machine translation

1. Introduction

Multimodal word discovery is the problem of discovering
words, in a previously unknown language, using a database in
which spoken utterances are matched to semantically related
content in some other modality. In a previous paper [1], we re-
formulated the multimodal word discovery problem as an ana-
log of statistical machine translation (SMT), and we proposed
learning an alignment between a sequence of phones (labeled in
the international phonetic alphabet) and a set of image concepts
(each matched to an underlying bounding box in the image).
The SMT approach has some advantages over the matched em-
bedding approach of [2], e.g., it performs word discovery si-
multaneous with the refinement of the discovered word models,
so that the resulting models of concept-to-word alignment (the
alignment model) and of word-to-phone generation (the likeli-
hood model) are simultaneously optimal. In [1], however, the
phones and image concepts are both discrete, therefore the al-
gorithm is only useful if the image and audio are pre-processed
by an object detection algorithm and a phone recognizer, re-
spectively. This paper extends the model of [1] (significantly)
by training deep neural posterior probability models, capable of
learning simultaneously optimal alignment and posterior mod-
els for real-valued image and audio feature vectors. The align-
ment model is implemented as a sort of HMM, in which the
discrete state (image concept) and discrete observable (phone)
are each related by DNNs to real-valued feature vectors (image
and speech, respectively), hence the system could be called a
DNN-HMM-DNN hybrid model.

2. Related Works
Human infants develop associations between acoustic stimuli
and visible objects through a process of language acquisition,
e.g., Skinner proposed that all language is learned by multi-
modal association [3]. The task of teaching computers to learn
language by multimodal association was proposed in three si-
multaneous research efforts in the late 1990s [4, 5, 6]. All three
projects used mobile or partially mobile robots, and in all three
projects, the movement of the robot was used to align audio and
visual stimuli: researchers spoke the name of objects within
the robot’s visual field. Robots learned to associate the audio
and visual stimulus using a replay memory [4], a hierarchy of
HMMs [7], or a graphical model [6].

In [8], crowd workers were hired to read the captions in
an image captioning corpus [9], creating a standardized cor-
pus for multimodal word discovery. In the first papers using
this corpus, word discovery was framed as an information re-
trieval problem: a cosine distance between learned embeddings
was used to retrieve images from audio, or audio from images.
The pre-trained image embedding [10] provided supervision for
training of the audio embeddings, either with [8] or without [11]
ground truth word boundaries. In [2], it was demonstrated that
the same embeddings could be used to automatically discover
word boundary times in the audio, and object bounding boxes
in the image, by exhaustively searching over a grid of audio and
image segments. The exhaustive search was replaced in [12] by
a more efficient convolutional time alignment, in which peaks
in similarity between the image and audio convolutional net-
works were taken to indicate discovered image concepts and au-
dio words, respectively. Convolutional multimodal time align-
ment is able to automatically discover word alignments between
Hindi and English [13], and to discover phone-like units in
speech [14].

Multimodal word discovery is closely related to the prob-
lem of unsupervised acoustic unit discovery, which tries to clus-
ter syllable-like units from raw audio. Unsupervised learning of
acoustic units can often be decomposed into two problems [15]:
segmentation divides the audio into variable-length segments,
then clustering of the segments creates an inventory of discov-
ered acoustic units. Some models detect syllable boundaries
using an algorithm inspired by human speech perception and
cluster by searching for recurrent patterns in the speech [16].
Other models attempted to solve the segmentation and cluster-
ing problem jointly using a nonparametric Bayesian network
that models each subword as a hidden Markov model (HMM)
[15] or Gaussian mixture model (GMM) [17]. To improve the
purity of the discovered clusters, several prior distributions are
used, such as Pitman-Yor process [18], symmetric Dirichlet
prior [15, 17], stick-breaking process [19] and prior based on
`1 norm of the observation probabilities [20].



3. Problem Formulation
Suppose a language learner tries to learn a set of unknown vi-
sually salient words from a spoken image caption with acoustic
features x = [x1, x2, · · · , xT ] ∈ RDx×T and a set of image
regions with features y := [y1, y2, · · · , yL] ∈ RDy×L. As-
sume that each image region yi depicts a single, discrete im-
age concept zi, and that the image concepts z := [z1, . . . , zL]
are independent, identically distributed drawn from a finite col-
lection of concepts C = {1, · · · ,K}, where K is the maxi-
mum number of distinct concepts the learner can learn in one
phase of acquisition. Assume that each acoustic feature xt rep-
resents a single acoustic phone unit φt drawn from the phone set
Φ = {1, · · · , V } and aligns to at most one image concept zit .
Suppose the alignments i := [i1, · · · , iT ], it ∈ {1, . . . , L} are
generated by a Markov chain p(it|it−1, L), and the phone fea-
tures φ := [φ1, · · · , φT ] are drawn independently given their
aligned image regions, then the conditional likelihood p(x|y)
can be written as:

p(x|y) =
∑
z,i,φ

p(z|y)p(i, φ,x|z, L) (1)

p(z|y) =

L∏
i=1

p(zi|yi) (2)

p(i, φ,x|z, L) =

T∏
t=1

p(it|it−1, L)
∑
φt∈Φ

p(φt|zit)p(xt|φt)

(3)

Further, the unimodal concept posterior probability of the im-
age concepts, p(zi = k|yi) =: πik =: πk(yi) is assumed to
be a softmax distribution of some kernel functions gk, k ∈ C
referred later as the visual kernels:

πik =
exp(gk(yi))∑K

k′=1 exp(gk′(yi))
(4)

To allow a more general class of observation probability distri-
butions for the acoustic features, we approximate p(xt|φt) with
the unimodal phone posterior probability p(φt = φ|xt) =:
btφ =: bφ(xt) by assuming uniform prior on the phones and
the segment features:

btφ :=
exp(hφ(xt))∑

φ′∈Φ exp(hφ′(xt))
(5)

p(xt|φt) =
p(xt)p(φt|xt)

p(φt)
(6)

∝ p(φt|xt) = btφt , (7)

where hφ(·), φ ∈ Φ are some kernel functions called the acous-
tic kernel similar to the visual kernel.

The goal of our model is to infer the hidden concepts z, the
hidden phone clusters φ and the hidden alignments i between
each image region and subsets of phone segments that describe
that image region, with a maximum a posteriori rule:

z∗, φ∗, i∗ = arg max
z,φ,i

p(z, φ, i|x,y). (8)

4. Model Description
Our model consists of three main components: An HMM align-
ment model, a concept posterior model learned by a DNN, and
a phone posterior model learned by another DNN.

If Eq. (2) were a product over time (
∏T
t=1 p(zit |yit)) rather

than over image regions (
∏L
i=1 p(zi|yi)), then Eq. (1) would

be a time-synchronized HMM, and could be solved using the
forward-backward algorithm. However, that is not the case
since we assume each image region represents a unique con-
cept.

The expectation maximization (EM) algorithm is used to
optimize Eq. (1) with respect to the initial probability p(it|L)
and transition alignment probabilities p(it|it−1, L) and the
concept-to-phone probabilities p(φt|zi). While the full la-
tent variable space has exponential complexity (O

{
KL
}

), it
turns out that under the Markov assumption, we only need
to evaluate a small subset of the latent posterior probabilities
to update the parameters of the alignment model using the
partial state variables st := (it, zit), t = 1, · · · , T . The
forward-backward algorithm over st has forward probabilities
αt(i, k) := p(x1:t, zi = k, it = i|y) and backward probabil-
ities βt(i, k) := p(xt+1:T |zi = k, it = i,y) that contain the
concept posterior of exactly one image region at a time, e.g.,

αt(j, l) =

L∑
i=1

K∑
k=1

αt−1(i, k)aijp(l|i, j, k, yj)p(xt|k), (9)

where p(l|i, j, k, yi) = 1[k = l] if i = j, else πjl; aij =
p(it = j|it−1 = i, L), and p(xt|k) =

∑
φt
p(φt|zit = k)btφ.

For the unimodal concept and phone posteriors, gradient
ascent with respect to the log conditional likelihood LMLE =
log p(x|y) is used to update their parameters. The gradients
propagating to the visual kernels and the acoustic kernels can
be shown respectively to be:

∂LMLE

∂gik
=

1

p(x|y)

K∑
j=1

p(x, zi = j|y)

πij

∂πij
∂gik

(10)

= p(zi = k|x,y)− πik =: ∆image
ik (11)

∂LMLE

∂htφ
= p(φt = φ|x,y)− btφ =: ∆phone

tφ . (12)

Intuitively, the gradients for modalities are positive in the di-
rection that moves the concept and phone unimodal posteri-
ors (πik and btφ) closer to the multimodal posterior probabil-
ities of concept k and phone φ, respectively. For example,
when gk(y) (similarly hφ(x)) is a scaled Euclidean kernel,
gk(y) = −‖y − µimk ‖22/2σ2, then Eq. (4) becomes a scaled
Gaussian, whose mean is re-estimated as

µimagek =

∑L
i=1 ∆image

ik yi∑L
i=1 ∆image

ik

(13)

In general, the parameters θ of the kernel functions satisfy:

∂LMLE

∂θimagek

=

L∑
i=1

K∑
k′=1

∆image
ik′

∂gk′(yi)

∂θimagek

, (14)

where the gradient step ∆image
ik is computed from p(zi =

k|x,y), which can be computed in O(L3KT ) time using a bi-
ased version of the forward probability. Define the biased for-
ward probability to be αt(i|j, k) := p(x1:t, it = i|zj = k,y),
for i = 1, . . . , L, k = 1, . . . ,K, then:

p(zi = k|x,y) =
πik
∑L
j=1 αT (j|i, k)∑K

k=1 πik
∑L
j=1 αT (j|i, k)

. (15)



Gradient update of θphoneφ is similar, except that the multimodal
phone posterior p(φt = φ|x,y) is a direct byproduct of the
unbiased EM algorithm:

p(φt|x,y) =

∑L
i=1 αt(i, z)pt(φt|z)βt(i, z)∑L

i=1

∑K
z=1 αt(i, z)pt(φt|z)βt(i, z)

, (16)

where pt(φt|z) = p(φt|z)p(xt|φt)∑
φt∈Φ p(φt|z)p(xt|φt)

.

Since our model has an exponential state space, simulta-
neously decoding z∗, i∗ and φ is intractable, but a reasonable
approximation can be implemented using a type of coordinate
descent. Using a Viterbi algorithm similar in form to Eq. (9),
i∗ = argmax p(i|x,y) can be optimized with an implicit aver-
age over all possible z, then z∗ can be optimized element-wise
assuming a known i∗:

z∗ ≈ argmax
z

p(z|i∗,x,y) ∝
L∏
i=1

∏
t:it=i

p(xt|zi) (17)

5. Experimental Setup
In order to simulate a low-resource setting, we constructed a
small synthetic dataset (called hereafter MSCOCO 2k) by sam-
pling image regions and matching spoken concept names from
the MSCOCO [21] and SpeechCOCO [22] validation sets, re-
spectively. Of the 80 object classes labeled in MSCOCO, we
selected the 65 whose class names appear in the original spoken
captions. For each such class, we randomly selected MSCOCO
images containing regions labeled with that class, with a max-
imum of 200 matched images per class. Image feature vectors
were extracted from each of the selected image regions, and
concatenated to form 2541 simulated images, each of which
contained exactly five image regions. One spoken instance of
each class name was extracted from the original SpeechCOCO
caption, and the five speech segments were concatenated to
form a simulated audio caption.

Acoustic feature vectors were computed once per phone,
and concatenated to form an acoustic feature sequence x whose
duration T is equal to the total number of phones in the audio
file. We experimented with three different phone-level features
for the clustering model. The “re-sample” approach was similar
to [17] and was created by re-sampling the Mel-Frequency Cep-
stral Coefficients ([23]) features with 25 ms window, 10 ms skip
step and 14 cepstral coefficients for each ground truth phone
segments to a 140-dimensional embedding. The “CTC mean”
feature was based on a two-layer Long Short-term Memory
(LSTM) [24], with 100-dimensional hidden layers, pre-trained
using the Connectionist Temporal Classification (CTC) train-
ing criterion [25] based on ground truth phone label sequences
in the SpeechCOCO training corpus (which does not overlap
our MSCOCO 2k corpus). This phone recognizer was trained
using stochastic gradient descent with greedy layer-wise pre-
training and a learning rate of 10−5. Inputs were MFCC. The
phone error rate on MSCOCO2k is 20 %. The “CTC mean” fea-
ture vector is then computed as the average, within each ground
truth phone segment, of the 100-dimensional hidden node ac-
tivations in the last LSTM layer of the recognizer. Finally, the
“force-aligned phones” feature vector was computed using the
predicted phone-label outputs of the same phone recognizer.

Image feature vectors were extracted from ground truth
image object regions using the residual net image clas-
sifier with 34 layers [26]; image features are the em-
bedding vectors from the penultimate layer of the classi-

Table 1: Concept-to-phone word discovery results on
MSCOCO2k (in %)

Segmental
(HMM)

Adaptor Grammar
[18]

Alignment Acc 97.0 -
Grouping F1 96.1 -
Boundary F1 90.0 93.1

Token/Type F1 77.1/24.0 85.1/62.0

fier. Both the phone recognizer and the image classi-
fier used in this work are implemented in Pytorch [27]
(https://github.com/lwang114/MultimodalWordDiscovery).

The unimodal posterior models of the DNN-HMM-DNN
use the Gaussian kernel function defined in Eq. (13) with the
width σ2 = 1 for all experiments. The alignment initial prob-
abilities, the alignment transition probabilities and the phone
probabilities are initialized uniformly over their supports. The
gradient ascent algorithm for the clustering models uses the nat-
ural gradients Eq. (15) over the entire dataset with a learning
rate of 0.1.

To study the role played by different components of our
image-to-audio system, we conducted two ablation studies: (1)
the model is trained to map phones to ground truth image labels
(concept-to-phone discovery), (2) the model is trained to map
audio feature vectors to ground truth image labels (concept-to-
audio discovery). For concept-to-phone discovery, we used the
adaptor grammar as our baseline [18]. For concept-to-audio and
image-to-audio discovery, we used the segmental GMM [17]
as the baseline. We used the code provided by [17] and ini-
tialized the landmark boundaries to be the ground truth phone
boundaries. This pre-segmentation ensures the same level of
supervision for all models in the acoustic modality, therefore
makes the results more reflective of the extent to which adding
the visual modality benefits the word discovery system. We
also compared our results to the adaptor grammar trained on
force-aligned phones and another image-to-audio word discov-
ery system, DAVENet [13] trained on the much larger Places
400k dataset [28] with 101 concept classes, which despite its
size, has a similar number of concepts to the 65 concept classes
we have.

6. Results
Table 1 presents results of the concept-to-phone ablation study,
compared to the word discovery performance of an adaptor
grammar [18]. The adaptor grammar is an algorithm that forms
words by clustering phone sequences so that lexical usage fre-
quencies follow a Pitman-Yor distribution; it has no access to
the image concept labels. Metrics reported in the table are from
the Zero Resource Speech Challenge (ZSRC) [29] computed
using tools provided by the authors; they include alignment ac-
curacy, grouping F1, boundary F1, and token/type F1. An align-
ment is a link between a phone and a concept: in each spoken
caption, each phone is correctly aligned with exactly one con-
cept. A grouping is a link between two phones: in each spo-
ken caption, phones in the same concept are correctly grouped.
A boundary is correct if it divides consecutive phones that be-
long to different concepts, and incorrect otherwise. Type F1
measures recall and precision in the detection of unique phone
strings as candidate words; Token F1 is the same measure, but
weights each phone string by its frequency. Our model achieves
97% alignment accuracy but perform worse in the boundary



Table 2: Concept-to-audio word discovery results on MSCOCO
2k (in %)

A - Alignment Accuracy GF1 - Grouping F1
BF1 - Boundary F1 TF1 - Token/Type F1

Re-sample CTC
Mean

Force-
Aligned
Phones

Segmental
GMM

A 72.9 75.2 85.3 -
GF1 54.9 61.6 68.6 25.2
BF1 43.2 47.2 55.8 43.7
TF1 17.1/4.3 12.2/1.2 32.7/5.2 11.6/3.3

and token/type F1 score than the adaptor grammar, suggesting
that the assignment of tokens to types is improved by imposing
a Pitman-Yor prior. Indeed, the reason for the large discrep-
ancy between the token and type F1 score for our models is
not because of an imbalanced dataset (the class distribution of
MSCOCO2k is uniform), but because of the within-class vari-
ability of the phone strings discovered by our models. Due to
a lack of word-level contextual information, we found that the
incorrect 3% of the alignment creates 700 additional incorrectly
discovered word classes, which drag down the type precision of
our model.

Concept-to-audio word discovery results are shown in Ta-
ble 2. In this case, we compare our models with the audio-only
segmental GMM [17] approach. Consistent with the concept-
to-phone word discovery results, the multimodal models con-
sistently perform better in the grouping F1 scores. Further, the
multimodal model also generally performs better in the bound-
ary and token F1 scores than the audio-only segmental GMM
baseline, suggesting that the visual modality increases the ro-
bustness of the model to acoustic variability. Among different
multimodal models, the discrete force-aligned phone features
perform better than the continuous re-sampled and CTC-mean
features, suggesting that the continuous features tend to have
a higher signal-to-noise ratio than the discrete labels for our
dataset. Comparing the fully unsupervised re-sampled acous-
tic embedding feature with the CTC-mean feature, we observe
that the re-sampled feature has better token and type F1, worse
grouping F1, and comparable alignment and boundary scores.
This result might be interpreted to mean that the CTC pre-
training improves its ability to identify grouping, but provides
no information that improves alignment or token/type discov-
ery: our proposed multimodal alignment is apparently sufficient
supervision for token/type discovery, even without using pre-
trained acoustic features.

Finally, the end-to-end word discovery result using image
and acoustic features are shown in Table 3. This table includes
three new measures: cluster purity (the percentage of acoustic
feature vectors assigned to each discovered word type whose
ground-truth label matches the majority), coverage (the percent-
age of ground truth phones that are chosen by the system for
alignment to any acoustic feature vector), and average length (of
discovered word tokens). Baselines are the adaptor grammar,
which sees only audio features, and DAVENet [13], which sees
both audio and images. In this case, for the “Res34+Forced-
Aligned” model, we no longer require ground truth phone
boundaries; instead, we pass the whole audio caption to our
CTC recognizer to obtain the force-aligned phone transcripts.
For the clustering performance, we can see that our model gen-
erates slightly lower-quality clusters but achieves better cover-

Table 3: Image-to-audio word discovery results on MSCOCO
2k (in %)

GF1 - Grouping F1 BF1 - Boundary F1
TF1 - Token/Type F1

Res 34
+ Force-
Aligned

Res 34
+ CTC-
Mean

Adaptor
Grammar

DAVENet
(Places
400k)
[13]

Accuracy 62.4 53.3 - -
Purity 46.1 46.1 - 53
GF1 41.1 32.0 - -
BF1 48.0 47.3 47.5 -
TF1 17/4.3 7.7/3.1 28.2/11.9 -

Coverage 87 100 - 45
Avg. Len

(GT=5.56) 6.34 6.35 4.41 -

Figure 1: An example of the image-to-audio word discovery re-
sult. The inputs of the algorithm are acoustic phone segments
and image regions. The ground truth phone labels are not avail-
able during training and only shown for clarity. The phone seg-
ment and image region with matching color frames are aligned
by the models.

age than DAVENet. Our model generally has trouble learning
good hidden representations of the image concepts even when
it is able to learn the alignment primarily due to our decoding
method, which decodes the alignment by averaging out all the
image concepts. As a result, each individual concept variable
correlates less well with the true concept of the features. Again
the discrete feature leads to better results than the continuous
feature. The drop in alignment accuracy from discrete to con-
tinuous features is comparable to that observed in Table 2, sug-
gesting that the effects of acoustic feature variability (between
these two columns) and of visual feature variability (between
these two tables) are approximately independent.

An example of the word discovery result is shown on Fig.
1. Our models are able to discover words such as “sink”
and “couch”. But due to a lack of word-level context infor-
mation, our model tends to oversegment longer words such
as “umbrella” and “skateboard” and sometimes confuses be-
tween two concepts that share phones such as “umbrella” and
“skateboard”.

7. Conclusion
In this work, we presented a DNN-HMM-DNN hybrid model
to learn word units from audio and semantically related images.
Our model can be optimized end-to-end efficiently using an ex-
act EM algorithm and achieves better word discovery perfor-
mance than the audio-only approaches.
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