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Abstract
Mismatched crowdsourcing was recently proposed as a poten-
tial approach to deriving moderately accurate speech transcrip-
tions using crowd workers unfamiliar with the language be-
ing spoken. In introducing this approach, we demonstrated its
promise with the help of an isolated word recovery task for
Hindi. However, it remained open whether mismatched crowd
sourcing can yield non-trivial accuracy in a continuous speech
task. In this work, we focus on this question and demonstrate a
word error rate of under 45% in a large-vocabulary task (again
for Hindi). In achieving this, we develop several new tech-
niques capable of scaling effectively to continuous speech. We
also provide an information theoretic analysis and estimate the
amount of information lost in transcription by the mismatched
crowd workers to be under 5 bits.
Index Terms: Speech transcriptions, Crowdsourcing, Noisy
Channel Models, Information-theoretic Analysis

1. Introduction
Crowdsourcing has been demonstrated as a viable technique to
collect transcriptions for large speech corpora [1, 2, 3]. How-
ever, this technique relies on the availability of native speakers
online, of the language being transcribed. This constraint makes
this approach applicable only to a small fraction of the world’s
languages [4].

Mismatched crowdsourcing [5] was introduced as a po-
tential approach to circumvent the need for a crowd of native
speakers, by using crowd workers unfamiliar with a language
to transcribe speech in that language. Transcriptions resulting
from native-language crowdsourcing suffer a labeling word er-
ror rate (LWER) of 20%, as compared to less than 5% WER for
professional transcription [2]. Automatic speech recognition
(ASR) trained using crowdsourced transcriptions is less accu-
rate than ASR trained using professional transcriptions, but [2]
found that the reduced cost (and consequent increased quantity)
of crowdsourced transcriptions completely eliminated the dif-
ference: an ASR trained using 160K words of crowdsourced
text performed as well as an ASR trained using 80K profession-
ally transcribed words. Mismatched crowdsourcing results in
LWER higher than that of native-language crowdsourcing, but
the impact on ASR performance has not yet been measured: in-
stead, this paper focuses on the problem of minimizing LWER.

The methods of mismatched crowdsourcing are similar to
those of ASR. For example, since crowd workers know nei-
ther the phone set nor the vocabulary of the language they
are transcribing, these knowledge sources must be provided
by the experimenter. Consequently, recovering a native lan-
guage transcription suffers the same computational problems
as ASR. Accuracy of mismatched crowdsourcing is best when
many crowd workers transcribe the same utterance, because

each crowd worker’s noisy transcription provides some infor-
mation about the phonetic content of the utterance. Since each
crowd worker makes mistakes, however, the entropy of the de-
coding graph increases linearly with the number of crowd work-
ers; the size of a complete decoding graph is consequently ex-
ponential in both the number of crowd workers and the length
of the utterance. Methods reported in [5] used a complete de-
coding graph, which is effective for mismatched crowdsourc-
ing of isolated words, but does not scale to continuous speech.
This paper therefore considers the problem of optimally prun-
ing the decoding graph for mismatched crowdsourcing, using
a series of phonetically-motivated and graph-theoretic pruning
steps designed to eliminate as much ambiguity as possible prior
to composition with the language model. Results are analyzed
both in terms of LWER, and by estimating the entropy of the
composed decoding graph using an original extension to con-
tinuous speech of the information theoretic analysis of [5].

2. System Architecture
Mismatched transcription can be modeled as a noisy channel as
shown in Figure 1. The input to the system is text in the for-
eign language, X which is encoded into speech A by a native
speaker. This is fed as input to the “crowd channel” which out-
puts transcriptions in English orthography, Y . We use a sim-
ple repetition code illustrated in Figure 1, when the channel
is invoked k times once for each repetition of a. The outputs
y(1), . . . , y(k) are modeled as identically and independently dis-
tributed (i.i.d.) samples produced by the crowd channel. This
is sent to the decoder which is considered to be successful if its
output, X̃ , matches X .

Ideally, we would like to use the maximum likelihood de-
coding rule:

x̃ = argmax
x

p(x|y) = argmax
x

p(y|x) · p(x)

= argmax
x

p(y(1) . . . y(k)|x) · p(x) (1)

However, this is not a scalable solution as the state space of
the decoding algorithm grows exponentially with k. To amelio-
rate this, we propose using a merged representation of the tran-
scripts, ŷ which is a function of y(1), . . . , y(k). For simplicity,
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Figure 1: System Architecture



if we assume there exists a single ŷ from the merged transcripts,
the decoding rule now becomes:

x̃ = argmax
x

p(x|ŷ) = argmax
x

p(ŷ|x) · p(x) (2)

We use weighted finite state transducers (WFSTs) (popularly
used in speech recognition systems [6]) to implement this de-
coding rule.

2.1. Channel Mergers
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Figure 2: Example: transcripts, by 7 crowd workers who do not
speak Hindi, of the utterance “parivāro ke mahatv se.” Tran-
scripts are aligned using ROVER, and merged to create a WFST.

As mentioned above, a scalable approach to decoding mis-
matched transcripts from a large number of crowd workers is
to first obtain a merged representation of the transcripts, before
decoding. The main tool we use for merging transcripts is the
alignment module of ROVER [7]. Each row in this alignment
corresponds to the transcript from a single crowd worker. The
- symbols indicate deletions in the alignment. The transcripts
were preprocessed in the following ways:

• After removing punctuation and converting all characters
to lower case, words that appear in an English dictionary
were rewritten phonetically (e.g., name would be rewrit-
ten as nYm, where Y is a new symbol standing for the
English phone /ey/).

• Certain letter sequences of length two, which stand for
a single phoneme and frequently occur in the transcripts
(like sh, oo, aa), were replaced by a single symbol (like
S, U and A, respectively). When appropriate, the new
symbols used were the same as those used for represent-
ing English phones in the previous step (e.g., text strings
ai, ay, ei and ey). After this, the word boundaries were
erased to form a single string of symbols.

In order to obtain more meaningful alignments from
ROVER’s alignment module, the symbol set of the transcripts
(after pre-processing) was partitioned into equivalence classes
based on pronunciation: all the vowel symbols were grouped
into a single class and the consonant symbols were grouped ac-
cording to the place of articulation of the Hindi phones closest
to them. For instance, the symbols k, g, K (for kh) and G (for
gh) were grouped into a single class. Deletion is assigned to a
class of its own. Before aligning, each symbol in the transcript
was replaced by a class symbol, denoting its equivalence class;
after the alignment, the class symbols were replaced by the orig-
inal symbols. This results in an alignment as shown in Figure
2. Figure 2 illustrates the importance of the use of equivalence
classes. The highlighted column on the right would tend to be
aligned as two columns, one with only d and - and another with
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Figure 3: Illustration of contextual weighting corresponding to
the Hindi utterance, abhiyān ke.

only t and -. Then, when extracting transcripts from this merged
channel, one could obtain transcripts with the sequence td or dt
in lieu of a symbol from this column, increasing the number of
decoding errors.

In order to control complexity without frequently deleting
the best path, the WFST confusion network is pruned prior to
further analysis. Pruning leverages a small number of phonetic
similarity heuristics to avoid pruning correct answers, as fol-
lows. Firstly, we retain the most frequent class symbols in each
column (possibly more than one per column in case of ties).
In addition, in every column in which deletion is the most fre-
quent class symbol, we retain the second most frequent class
symbol(s) as well. Then, each class symbol retained in a col-
umn is replaced by the most frequent symbol(s) in that class.
This pruned alignment can be represented as a WFST, as shown
in Figure 2. The weights on the arcs are only shown on the first
few arcs (for visual clarity); these weights are derived from the
frequencies of the symbols in each column.

2.2. Contextual Weighting

From the data, we observe that there are several instances when
erroneous transcriptions occur in bursts. For instance, the high-
lighted rows in Figure 2 show two transcripts which match the
others towards the beginning and the end, but are quite different
in the middle. We model this kind of behavior by assigning a
contextual weight to the symbols, before computing the most
frequent symbols in each column.

Letm be the total number of columns in the alignment, and
t be the total number of transcripts. Let σij denote the class
symbol in the j th transcript, appearing in the ith column. For
a “window size” d, we define the d-contextual weight η(d)ij as
follows.

λij = |K| where K = {k | σik = σij}

η
(d)
ij =

∑
k:|k−i|≤d

λkj

Here λij is the number of occurrences of the class symbol
σij in the ith column. η(d)ij aggregates these weights from neigh-
boring columns (up to a distance d) for each class symbol σij .
This is illustrated in Figure 3 with d = 3; the letter v receives
weight η(3)ij = 21. The final weight of a class symbol σ in the

ith column is
∑
j:σij=σ

η
(d)
ij . We remark that if the window size

d ≥ m− 1 then η(d)ij =
∑m
k=1 λkj (which is independent of i).



2.3. System Combination

As described in Section 2, maximum-likelihood decoding does
not scale well with the number of transcripts per utterance.
However, if the decoder were to be given a small list of hypothe-
ses, the decoder can efficiently compute the likelihood of each
of the candidate hypotheses separately, and select the best one.
We use the (less accurate, but more efficient) decoders (both
individual channel decoders and the merged channel decoders)
from above to generate such a hypotheses list.

3. Improvements via Data Filtering
As mentioned in Section 2, we expect higher accuracy from
mismatched crowdsourcing when many crowd workers tran-
scribe the same utterance. The transcripts tend to exhibit a great
amount of variance in how they relate to the original message.
However, given sufficiently many transcripts per utterance, it is
conceivable that there would be clusters of transcripts that are
similar to each other while some transcripts appear as outliers.
We seek to identify an ordering of the transcripts that highly
ranks the transcripts that are most similar to the others and gives
low ranks to the outliers. We term this approach data filtering.

In order to obtain this ranking, each transcript is assigned a
score which is defined as the sum of similarity scores between
that transcript and all other transcripts for the same utterance.
A natural choice for a similarity score would be based on edit
distance. However, edit distance between shorter strings tends
to be smaller than that between longer strings, leading to shorter
strings appearing at the top of the ranking. To immunize against
this length effect, we define the similarity score to be the differ-
ence between the sum of the lengths of the strings and the edit
distance between the strings. The sum of the lengths stands for
the “trivial edit cost” corresponding to completely deleting one
string and inserting all the symbols in the other string. Then,
the similarity score between two strings is the maximum possi-
ble savings in edit cost compared to this trivial cost.

4. Entropy of the Decoding Graph
We use information-theoretic tools to estimate an upper bound
of the conditional entropy of the inputs given the outputs of the
mismatched channel used for continuous speech. For any prob-
ability distribution q, we have

H(X|Y ) = E(x,y)∼X,Y [− log p(x|y)]
≤ E(x,y)∼X,Y [− log q(x|y)]

We shall define q based on an extension of our decoder
from Section 2.1 that produces a multi-transcript alignment
for a given y. This alignment consists of a sequence of lists
L1(y), . . . , Ln(y), where n is a sufficiently large upper bound
on the number of words inX . Each Li(y) is a multi-set consist-
ing of one or more words from the vocabularyX and optionally
ε denoting an empty string. We will denote the multiplicity of
a word w in a multi-set L by µw(L). A path in this alignment
specifies a sequence of words (w1, . . . , wn), with wi ∈ Li(y);
the string obtained by concatenating these words (after omitting
all occurrences of ε) is denoted by < w1, . . . , wn >.

We define the conditional probabilities q(x|y) using the
alignment associated with y. First, we define probabilities
qi(w|y):

qi(w|y) =

{
α·µw(Li(y))
|Li(y)|

, if w ∈ Li(y)
1−α

|X\Li(y)|
, if w /∈ Li(y)

whereα is a tunable parameter. Using these probabilities we de-
fine q(x|y) to be the sum (computed using the sum-product al-
gorithm) of probabilities of all paths corresponding to the string
x = 〈w1, . . . , wn〉, while q̂(x|y) ≤ q(x|y) is the probability
of the most likely such path (computed using the max-product
algorithm). If ŵ`i is the ith token in the max-product path for
x` = 〈w`1, . . . , w`n〉, then

H(X|Y ) ≤
N∑
i=1

E(x,y)∼X,Y [− log qi(ŵ
`
i |y)]

≈
N∑
i=1

1

N

N∑
`=1

− log qi(ŵ
`
i |y`)

≈
N∑
i=1

1

N

∑
`∈Ni

0

log |Li(y`)|+
∑
`∈Ni

1

log |X \ Li(y`)|

(3)

where N i
0 = ` | ŵ`i ∈ Li(y`) and N i

1 = [N ]\N i
0. An estimate

of the rate of conditional entropy can be derived by dividing the
above estimate by the average number of words per utterance.

5. Experiments
Our crowdsourcing experiments were performed using Ama-
zons Mechanical Turk (MTurk) [8]. A total of 278 crowd work-
ers (Turkers) participated in our tasks and also provided infor-
mation about their language background. 143 of them were only
familiar with English; Spanish was the next most frequently
listed language (58 Turkers), followed by French (24), German
(14), Japanese (12).

We chose Hindi as our foreign language. We extracted
Hindi speech from publicly available Special Broadcasting Ser-
vice (SBS, Australia) radio podcasts described in [5]. This cor-
pus comprised approximately 50 mins of speech from the pod-
casts, with roughly 10000 word tokens, which was then man-
ually transcribed at the phonetic level by a Hindi speaker. We
extracted short segments up to 2 seconds long from this corpus;
keeping the segments short made the mismatched transcription
task easier for the Turkers. The MTurk task was set up as de-
scribed in [5]. The Turkers were presented short speech seg-
ments in Hindi, up to 2 seconds long and asked to provide En-
glish text (often in the form of nonsense syllables) that most
closely matched what they heard. We also extracted speech
from Hindi news broadcasts on the All India Radio (AIR) web-
site1 . These broadcasts were accompanied by corresponding
speech transcripts. A total of 200 utterances, approximately 1
second long, were extracted from the news podcasts. 100 of
these utterances were randomly chosen as our evaluation data,
totaling 391 word tokens; the rest were used as training data (in
addition to the above-mentioned SBS data). Each of these 200
AIR utterances were transcribed by 15 distinct Turkers.

Our mismatched transcription system was set up to be
a closed vocabulary task; our vocabulary comprised a total
of 11419 words appearing in transcripts from the AIR-Hindi
Bhopal news station between the months of December 2013 to
July 2014. We built a trigram language model using these tran-
scripts, along with additional text from the EMILLE monolin-
gual written corpora [9]; we only extracted sentences that had
no out-of-vocabulary words from the EMILLE corpus. As our
evaluation set consisted of randomly spliced utterances that did

1http://www.sbs.com.au/podcasts/yourlanguage/hindi/
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Figure 4: Estimates of conditional entropy (CE) of X given Y
on the evaluation set for varying number of Turkers.

System WER PER
Best Individual Channel 77.2 61.5

5-Merged Channel 74.9 49.4
10-Merged Channel 65.7 46.9
15-Merged Channel 64.9 44.7

5-Merged Channel (CW) 71.1 48.6
15-Merged Channel (CW) 60.9 39.8

Combination 60.8 40.5

Table 1: WER/PER on the evaluation set using different sys-
tems. CW denotes merged channels with contextual weighting.

not necessarily coincide with the beginning or end of a sentence,
we trained our trigram language model on N-gram counts with-
out any explicit start-of-sentence or end-of-sentence markers.
The mismatched channel is modeled as a finite memory pro-
cess using WFSTs. The channel model is trained using pairs of
training instances, (x, y), where x is a phonetic sequence in the
foreign language and y is the corresponding English letter se-
quence produced by the crowd worker. This model probabilis-
tically maps each phone in x to an English single-letter or two-
letter sequence. The weights on the arcs of the FST model were
learned using the EM algorithm [10] to maximize the likelihood
of the observed training instances. The USC/ISI Carmel finite-
state toolkit2 was used for EM training of the WFST model and
the OpenFst toolkit [11] was used for all finite-state operations.

Table 1 shows word error rates (WER) and phone error rates
(PER) on the evaluation set using systems of varying configu-
rations, without any data filtering. The first row shows the error
rates using the best individual channel model. The next three
rows show the improvements in error rate from using merged
channels with 5, 10 and 15 transcripts, respectively. Increas-
ing the number of Turkers from 5 to 15 significantly reduces
the WER (at p < 0.001 as measured by the NIST MAPSSWE
significance test [12]). The next two rows show the influence of
using contextual weighting with the merged channels; this leads
to further drops in error rates. The last row in Table 1 shows er-

2http://www.isi.edu/licensed-sw/carmel/

System WER PER
1-Filtered Channel 68.0 46.0

5-Filtered Merged Channel 54.7 35.7
15-Filtered Merged Channel 62.9 41.9

5-Filtered Merged Channel (CW) 57.3 37.5
15-Filtered Merged Channel (CW) 54.2 35.2

Combination with Filtering 43.5 28.0

Table 2: WER/PER on the evaluation set using different sys-
tems, with data filtering.

ror rates derived from system combination. This system uses
a hypothesis list compiled by accumulating the top-scoring hy-
potheses from each of the 15 individual channel models. This
list is further augmented by the top-scoring hypotheses from all
five merged channel systems in Table 1. This system is compa-
rable in WER to the best system used in the combination.

Table 2 clearly demonstrates the importance of data filter-
ing. All the error rates listed in Table 1 are significantly reduced
by using data filtering. With data filtering in place, a model
trained and decoded using the top-5 Turker transcripts performs
significantly better than a model that uses all 15 Turker tran-
scripts (rows 2 and 3 in Table 2). This system (54.7%) performs
comparably to a system with contextual weighting that uses all
15 Turker transcripts (54.2%). The last row in Table 2 corre-
sponds to system combination using the top-scoring hypotheses
from all the other systems shown in Table 2. Unlike in Table 1,
the combined system with data filtering significantly improves
over the best system used in the combination (at p < 0.001).

Figure 4 shows the rate of the conditional entropy estimate
derived in Equation 3 plotted against individual channel models
with varying number of Turkers. This plot further demonstrates
the significance of data filtering; systems combined in the order
specified by data filtering results in a tighter bound. The condi-
tional entropy rate using all 15 Turkers is estimated to be under
5 bits and further drops to 4.6 bits when we include the merged
channel models from Table 2.

6. Conclusions
This work establishes the possibility of deriving speech tran-
scriptions for continuous speech using mismatched crowdsourc-
ing. We propose several techniques capable of scaling effec-
tively to continuous speech and obtain a labeling error rate un-
der 45% for a large-vocabulary continuous speech task in Hindi
using transcriptions in English orthography from crowd work-
ers. We also provide a theoretical estimate of the conditional
entropy rate of the mismatched channel that evaluates to less
than 5 bits. Future work includes analyzing the impact of mis-
matched transcription on ASR performance and experimenting
with a range of different languages.
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