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İ. YücelÖzbek.1,Mark Hasegawa-Johnson2, Mübeccel Demirekler1
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Abstract
This work examines the utility of formant frequencies and their
energies in acoustic-to-articulatory inversion. For thispurpose,
formant frequencies and formant spectral amplitudes are auto-
matically estimated from audio, and are treated as observations
for the purpose of estimating electromagnetic articulography
(EMA) coil positions. A mixture Gaussian regression model
with mel-frequency cepstral (MFCC) observations is modified
by using formants and energies to either replace or augment the
MFCC observation vector. The augmented observation results
in 3.4% lower RMS error, and 2.7% higher correlation coef-
ficient, than the baseline MFCC observation. Improvement is
especially good for plosive consonants, possibly because for-
mant tracking provides information about the acoustic reso-
nances that would be otherwise unavailable during plosive clo-
sure and release.
Index Terms: acoustic-to-articulatory inversion, formant track-
ing, GMM regression

1. Introduction
Formant frequencies are the resonances (natural frequencies) of
the vocal tract. As the articulators move, the vocal tract area
function changes, and therefore the resonance frequenciesof
the vocal tract change. Hence, there is a close relation between
position of articulators and formant frequencies. There are nu-
merous studies in the literature in which formant frequencies
are considered as acoustic data to estimate corresponding artic-
ulatory data [3, 9].

The aim of this study is to examine the usefulness of for-
mant related acoustic features as inputs to a Gaussian-mixture-
model regression (GMM) estimator of articulator positions.
GMM regression has been demonstrated to successfully esti-
mate the positions of receiver coils in Electromagnetic Articu-
lography (EMA) recordings, using mel-frequency cepstral coef-
ficients (MFCC) as the observation [4]. The utility of formants
as an input to other articulatory estimation methods suggest the
possibility that formant-based parameters may also be useful for
GMM regression. This paper measures their utility.

The rest of the paper is organized as follows: Section
2 gives a summary of the GMM based non-linear regression
method for articulatory inversion. Section 3 describes extrac-
tion formant related acoustic features. The experimental results
are given in Section 4. Section 5 presents our conclusions and
discussion.

2. Acoustic-to-articulatory inversion
GMM based nonlinear regression is used in acoustic to articu-
latory mapping [4]. The basic idea of this method is as follows.
Let Z, Y be two vectors from acoustic and articulatory spaces

and letg(.) be an inverse mapping function defined as:

Y = g(Z) (1)

Acoustic-to-articulatory inversion methods look for an in-
verse mapping functiong (.) to estimate articulatory vectors
from given acoustic data. In a probabilistic framework, thein-
verse mapping functiong (.) can be approximated if enough
data pairs (Zi , Yi) are available. Let̂g (.) be an estimate of the
true inverse mapping functiong (.). Suppose that̂g is selected
in order to minimize the mean squared error of the articulatory
estimate, thus

ŷ , ĝ(Z) = E(Y|Z) (2)

Assume thatZ,Y are jointly distributed according to a mix-
ture Gaussian probability density function. In that case, the joint
distribution can be written as
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Eq. 4 shows that, under the assumed mixture Gaussian distri-
bution,E(Y|Z) is a weighted average of affine functions. The
parameter set of the GMM,Θ = (πi, µ

i, Σi), may be estimated
using the expectation maximization algorithm, as described in
[4].

3. Extraction of formant frequencies and
their energies

Formants are the resonant frequencies of the vocal tract. During
vowels and glides, formant frequencies may be estimated by the
poles of an autoregressive spectral estimator, though temporal
smoothing improves the estimate; during obstruent consonants,
formant frequencies must be interpolated using some type of
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Figure 1:The spectrogram of the utterance ’Those thieves stole
thirty jewels’ from fsew0-Mocha-TIMIT database. Estimated
formant trajectories are superimposed.

dynamic programming model. In this paper we use the formant
tracker described in [11]. Our formant tracker consists of three
stages, two of which are quite standard, and one of which is un-
usual but useful. In the first stage, frame-based formant candi-
dates and their bandwidths are calculated by solving the denom-
inator polynomial of the LPC filter. In second stage, formants
are selected from among the candidates using a dynamic pro-
gramming algorithm. In the third stage, formant trajectories are
re-estimated using a Kalman smoother. LPC analysis is based
on a spectral observation of 5kHz bandwidth (10kHz sampling
frequency), using a 12th order autoregressive model. The output
of the formant tracking algorithm for the one of the sentences
from Mocha-Timit database is shown in Fig. 1. The energy as-
sociated with each formant frequency is calculated as follows.
First, a magnitude spectrum is computed for each frame. Sec-
ond, for each formant, Gaussian windows are generated in the
spectrum domain. The mean and variance of each Gaussian
are related to the associated formant frequency and bandwidth
respectively. The bandwidths of the first four formants are as-
sumed to be fixed at the values of BW= [90, 110, 170, 220]
Hz. The means of the Gaussian windows vary in time, tracking
the estimated formant frequencies. Third, the energy levelas-
sociated with theith formant,Ei, is computed by multiplying
the magnitude spectrum|X(f)| by the ith Gaussian window,
Gi(f), and summing over all frequencies:

Ei = ln

0

@

Fs
X

f=0

Gi(f)|X(f)|

1

A (6)

Fig. 2 shows the magnitude spectrum and corresponding Gaus-
sian windows for the 155’th frame of the spectrogram given in
Fig. 1.

4. Experiments
4.1. Experimental condition

In this work, we use the Timit-MOCHA database [1]. The
acoustic data and EMA trajectories of one female talker (fsew0)
are used; these data include 460 sentences. MFCC and for-
mant related features were computed using a 36ms window with
18ms shift. The acoustic feature types used in this work are
given in Table-1. The articulatory data are EMA trajectories,
which are the X and Y coordinates of the lower incisor, up-
per lip, lower lip, tongue tip, tongue body, tongue dorsum and
velum. The articulatory data are normalized by suggested meth-
ods given in [2] and downsampled to match the 18ms shift rate.
All models are tested using 10-fold cross-validation. For each
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Figure 2: Magnitude spectrum and Gaussian windows for
155’th frame of Fig-1. Corresponding four formant frequencies
are F=[586, 1457, 2628, 3803] Hz.

fold, nine tenths of the data (414 sentences) are used for training
and one tenth (46 sentences) for testing. The estimated EMA
trajectories are calculated by using equation (4) and theseesti-
mated trajectories are smoothed by the low pass filter described
in [2]. Cross-validation performance measures (RMS error and
correlation coefficient) are computed as the average of all ten
folds.

Table 1:Acoustic feature types.

F
Four formant frequencies

F = [F1, F2, F3, F4]

E
Energy levels of four formants

E = [E1, E2,E3,E4]

M
Mel-frequency cepstral coefficients

(13 orders) M = [M1,...,M13]
Combination of X and its time derivatives;
velocity and acceleration components

X ∆, ∆∆ X ∆, ∆∆= [X, X ∆, X ∆∆]
(X can be any feature type or any
combination
i.e. MF ∆, ∆∆= [MF, MF ∆, MF ∆∆])

Algorithm performance is measured using the three perfor-
mance measures (RMS error, normalized RMS error and corre-
lation coefficient) described in [2, 10].
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where,xi
k andx̂i

k are true and estimated position, respectively,
of theith articulator in thekth frame.

Normalized RMS error:
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Figure 3:RMS error and correlation coefficient as a function of
the number of mixture components using formant related acous-
tic features given Table-1.

where,x̄i and ¯̂xi are the average position of true and estimated
ith articulator respectively.

In order to determine whether or not articulatory inversion
using formant parameters significantly outperforms articulatory
inversion without formant parameters, the following test was
performed. Two hypothesis are used for this purpose:H0 and
H1. The null hypothesisH0 states that the RMS error of the re-
gression model observing both formant parameters and MFCC
is no different from the RMS error of the regression model
observing only MFCCs; the test hypothesisH1 states that the
RMS errors differ. Thus:

H0 : e = J − J
F ≤ 0

H1 : e = J − J
F

> 0 (10)

where,J is the RMS error without formant related features and
JF is the RMS error with formant related features. As de-
scribed in [5], we reject the null hypothesis if

Z =
ē
σē√
K

> t0(α) (11)

where,ē = 1

K
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ei, σē =

q

1

K
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(ei − ē)2 andt0(α)

is the threshold based on the upper tail of the normal density
with significance levelα; for α = 0.01, t0 = 2.33. In order to
validate the assumption of independent trials, each sentence is
treated as a trial, rather than each frame; thusei is the average
RMS for theith sentence. There areK = 460 sentences in the
ten-fold cross-validation test. Significance tests for correlation
coefficients are performed using a similar procedure.

4.2. Experimental results

The acoustic-to-articulatory inversion experiment usingonly
formant related acoustic features can be seen in Fig. 3. In this
figure RMS error and correlation coefficient are calculated for
different mixture Gaussian PDFs with 1 to 64 components. It
can be observed that combination of formant related features
and their velocity and acceleration component gives best per-
formance for the 64-Gaussian regression. The resulting lowest
RMS error is about 1.56 mm, and the highest correlation coef-
ficient is about 0.72.

The comparison of formant related acoustic features and
MFCC can be examined in Fig. 4. In general, MFCC give
better results than formant related features; this is as reported
in automatic speech recognition applications. This figure also
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Figure 4:RMS error and correlation coefficient as a function of
the number of mixture components using formant features and
MFCC.

1 2 4 8 16 32 64

1.44
1.46

1.49

1.53

1.57

1.61

1.65

1.69

1.73

1.77

1.81

1.85

1.89

Number of mixtures

RM
S 

Er
ro

r (
mm

)

 

 

M_∆,∆∆ (dim=39)

MF_∆,∆∆ (dim=51)

MFE_∆,∆∆ (dim=63)

1 2 4 8 16 32 64

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Number of mixtures

Co
rre

lat
ion

 C
oe

ffic
ien

t

 

 

M_∆,∆∆ (dim=39)

MF_∆,∆∆ (dim=51)

MFE_∆,∆∆ (dim=63)

Figure 5:RMS error and correlation coefficient using combina-
tion of formants related features and MFCC.

shows that velocity and acceleration components improve the
accuracy of MFCC-based articulatory inversion.

The combination of MFCC and formant related acoustic
features in acoustic-to articulatory inversion is tabulated in Fig.
5. The RMS error is about 1.49 mm for M∆, ∆∆ with 64
Gaussian mixtures. Using only combination of MFCC and for-
mant frequencies reduces RMS error to 1.46 mm. Combination
of MFCC, formants and formant energies reduces RMS error to
about 1.44 mm. Hence, overall RMS error reduction is about
3.35%. Correlation coefficient increases from 0.75 to 0.77,a
2.66% relative improvement.

Fig. 6 provides more details regarding the utility of formant
related acoustic features in inversion. All results in thisfigure
use a 64-Gaussian regression. The abscissa distinguishes differ-
ent articulators. As an example, Normalized RMS error for Y
axis of upper lip (uly) reduced from 0.736mm to 0.7mm, a 4.2%
relative error reduction (left side of Fig. 6). Similarly, correla-
tion improvements and corresponding percentages are givenon
the right side of the same figure.

Fig. 7 measures the significance of the normalized RMS er-
ror reductions and correlation coefficient improvements shown
in Fig. 6. This figure shows that RMS error reduction and cor-
relation improvement for each articulators are significantat the
α = 0.01 level of significance.

The experimental results also show formant related acoustic
features are especially useful for plosive and fricative sounds,
as well as vowel sounds (Table-2 and Fig. 8). As an example,
RMS error reduction and correlation improvement are about 4%
and 3.4% for plosive sounds, respectively.

An example of true and estimated trajectories for the y-
coordinates of the tongue body is shown in Fig. 9 for a MOCHA
utterance.
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Figure 6:Normalized RMS error reduction and correlation co-
efficient improvement for each articulator in detail. The number
of Gaussian mixture is 64. li, ul,ll, tt, tb, td and v show lower
incisor, upper lip, lower lip, tongue tip, tongue body, tongue
dorsum and velum, respectively. *x and *y in each articulator
show X and Y coordinates, respectively
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Figure 7: Significance tests for normalized RMS error reduc-
tions and correlation improvements given in Fig. 6. Abbrevi-
ations related to the names of the articulators are explained in
Fig. 6

5. Discussion and conclusion
In this study, the usefulness of formant frequencies and corre-
sponding energies in acoustic-to articulatory inversion are ex-
amined. It is observed that combination of MFCC and formant
related features as acoustic features gives better resultsthan us-
ing only MFCC. The average RMS error reduction is about
3.4%, and correlation improves by 2.7%; both improvements
are statistically significant at theα = 0.01 level of significance.
Formant features are especially useful for articulatory inversion
during plosives and fricatives; during plosive phonemes, RMS
error reduction and correlation improvement are about 4% and
3.4%, respectively.

6. Acknowledgment
We would like to thank The Scientific and Technological Re-
search Council of Turkey (TUBITAK) for its financial support

7. References
[1] A. Wrench, http://www.cstr.ed.ac.uk/artic/mocha.html, Queen Margaret University College, 1999.

[2] K. Richmond. Estimating Articulatory Parameters from the Speech Signal. PhD thesis, The Center for
Speech Technology Research, Edinburgh, UK, 2002.

[3] S. Ouni and Y. Laprie, ”Modeling the articulatory space using a hypercube codebook for acoustic-to-
articulatory inversion,” JASA, vol. 118, no. 1, pp. 444-460, 2005.

[4] T. Toda, A. W. Black, and K. Tokuda, ”Statistical mappingbetween articulatory movements and acoustic
spectrum using a gaussian mixture model,” Speech Communication, vol. 50, pp. 215-227, 2008.

Table 2:RMS error and Correlation coefficient for broad pho-
netic classes (vowel,approximate,nasal,plosive and fricative),
using a 64-Gaussian regression.

RMS eror (mm) Correlation coefficient

Class M MFE red M MFE imp
∆, ∆∆ ∆, ∆∆ (%) ∆,∆∆ ∆, ∆∆ (%)

Vowel 1.424 1.379 3.2 0.759 0.775 2.1
App. 1.557 1.521 2.3 0.706 0.717 1.6
Nasal 1.568 1.527 2.6 0.645 0.659 2.2
Plos. 1.603 1.539 4 0.679 0.702 3.4
Fric. 1.406 1.369 2.6 0.638 0.658 3.1

Plosive Wovel Nasal Fricative Approx.

2.3

2.6

3.2

4

Broad Phonetic Class

RM
S 

Er
ro

r R
ed

uc
tio

n 
(%

)
Plosive Fricative Nasal Wovel Approx.

1.6

2.1
2.2

3.1

3.4

Broad Phonetic Class

Co
rre

la
tio

n 
Co

ef
fic

ie
nt

 Im
pr

ov
em

en
t (

%
)

Figure 8:Articulatory inversion RMS error reduction and Cor-
relation coefficient improvement using formant related acoustic
features for each broad phonetic class, using a 64-Gaussianre-
gression.

[5] Y. Bar-Shalom, X.R. Li, Estimation and Tracking: Principles, Techniques and Software,Artech House, Inc.,
1993.

[6] O. Engwall, ”Introducing visual cues in acoustic-toarticulatory inversion,” in Interspeech, 2005, pp. 3205-
3208.

[7] Asterios Toutios, Konstantinos Margaritis: ”Contribution to Statistical Acoustic-to-
EMAMapping”,(Eusipco-2008),

[8] Qin, C. and Carreira-Perpin, M. . (2007) ”A comparison ofacoustic features for articulatory inver-
sion”.Interspeech 2007.

[9] Schroeter, J., Sondhi, M.M., 1994. Techniques for estimating vocal-tract shapes from the speech signal.
IEEE Trans.Sp.Au.Process.2,133-150.

[10] Katsamanis, A. and Papandreou, G. and Maragos, P,”FaceActive Appearance Modeling and Speech Acous-
tic Information to Recover Articulation” IEEE Trans. Speech and Audio Proc., 17(3):411-422, 2009
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