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Abstract

This work examines the utility of formant frequencies angirth
energies in acoustic-to-articulatory inversion. For {hispose,
formant frequencies and formant spectral amplitudes ae au
matically estimated from audio, and are treated as obsengt
for the purpose of estimating electromagnetic articulpbya
(EMA) coil positions. A mixture Gaussian regression model
with mel-frequency cepstral (MFCC) observations is modifie
by using formants and energies to either replace or augrnent t
MFCC observation vector. The augmented observation sesult
in 3.4% lower RMS error, and 2.7% higher correlation coef-
ficient, than the baseline MFCC observation. Improvement is
especially good for plosive consonants, possibly becaoise f
mant tracking provides information about the acoustic +eso
nances that would be otherwise unavailable during plodive ¢
sure and release.

Index Terms: acoustic-to-articulatory inversion, formant track-
ing, GMM regression

1. Introduction

Formant frequencies are the resonances (natural freqasrafi
the vocal tract. As the articulators move, the vocal traegtar
function changes, and therefore the resonance frequeaties
the vocal tract change. Hence, there is a close relationgmstw
position of articulators and formant frequencies. Theeerar
merous studies in the literature in which formant frequesci
are considered as acoustic data to estimate correspondiclg a
ulatory data [3, 9].

The aim of this study is to examine the usefulness of for-
mant related acoustic features as inputs to a GaussianHext
model regression (GMM) estimator of articulator positions
GMM regression has been demonstrated to successfully esti-
mate the positions of receiver coils in Electromagnetidoirt
lography (EMA) recordings, using mel-frequency cepstoaife
ficients (MFCC) as the observation [4]. The utility of fornan
as an input to other articulatory estimation methods sudges
possibility that formant-based parameters may also beiLfesf
GMM regression. This paper measures their utility.

The rest of the paper is organized as follows: Section
2 gives a summary of the GMM based non-linear regression
method for articulatory inversion. Section 3 describesaext
tion formant related acoustic features. The experimeptllts
are given in Section 4. Section 5 presents our conclusiods an
discussion.

2. Acoustic-to-articulatory inversion

GMM based nonlinear regression is used in acoustic to articu
latory mapping [4]. The basic idea of this method is as foow
Let Z, Y be two vectors from acoustic and articulatory spaces
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and letg(.) be an inverse mapping function defined as:
y=g(2) )

Acoustic-to-articulatory inversion methods look for an in
verse mapping functiog (.) to estimate articulatory vectors
from given acoustic data. In a probabilistic framework, ithe
verse mapping functiog (.) can be approximated if enough
data pairs €; , );) are available. Leg (.) be an estimate of the
true inverse mapping functiog (.). Suppose thag is selected
in order to minimize the mean squared error of the articajato
estimate, thus

j=8(2)=EV2) 2

Assume that, ) are jointly distributed according to a mix-
ture Gaussian probability density function. In that calse joint
distribution can be written as

K
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K is the number of mixture components, and the mixture
weightsm; satisfnyi1 m; = 1. The conditional expectation
E(Y|Z) is then:

K
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Eqg. 4 shows that, under the assumed mixture Gaussian distri-
bution, ()| Z) is a weighted average of affine functions. The
parameter set of the GMM) = (;, 1*, ©%), may be estimated
using the expectation maximization algorithm, as desdribe

[4].

3. Extraction of formant frequencies and
their energies

Formants are the resonant frequencies of the vocal tracin@u
vowels and glides, formant frequencies may be estimateddy t
poles of an autoregressive spectral estimator, thoughdehp
smoothing improves the estimate; during obstruent comgena
formant frequencies must be interpolated using some type of
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Figure 1:The spectrogram of the utterance 'Those thieves stole
thirty jewels’ from fsewO-Mocha-TIMIT database. Estintate
formant trajectories are superimposed.

dynamic programming model. In this paper we use the formant
tracker described in [11]. Our formant tracker consistshoée
stages, two of which are quite standard, and one of which-is un
usual but useful. In the first stage, frame-based formardican
dates and their bandwidths are calculated by solving therden
inator polynomial of the LPC filter. In second stage, fornsant
are selected from among the candidates using a dynamic pro-
gramming algorithm. In the third stage, formant trajectsrare
re-estimated using a Kalman smoother. LPC analysis is based
on a spectral observation of 5kHz bandwidth (10kHz sampling
frequency), using a 12th order autoregressive model. Ttpribu

of the formant tracking algorithm for the one of the sentesnce
from Mocha-Timit database is shown in Fig. 1. The energy as-
sociated with each formant frequency is calculated asviallo
First, a magnitude spectrum is computed for each frame. Sec-
ond, for each formant, Gaussian windows are generated in the
spectrum domain. The mean and variance of each Gaussian
are related to the associated formant frequency and battdwid
respectively. The bandwidths of the first four formants &€ a
sumed to be fixed at the values of BW= [90, 110, 170, 220]
Hz. The means of the Gaussian windows vary in time, tracking
the estimated formant frequencies. Third, the energy lasel
sociated with the&th formant, F;, is computed by multiplying

the magnitude spectrunX (f)| by theith Gaussian window,
G;(f), and summing over all frequencies:

Fs
Ei=ln (3 Gi(NIX(f)] (6)
f=0

Fig. 2 shows the magnitude spectrum and corresponding Gaus-
sian windows for the 155'th frame of the spectrogram given in
Fig. 1.

4. Experiments
4.1. Experimental condition

In this work, we use the Timit-MOCHA database [1]. The
acoustic data and EMA trajectories of one female talken(@e

are used; these data include 460 sentences. MFCC and for-
mant related features were computed using a 36ms window with
18ms shift. The acoustic feature types used in this work are
given in Table-1. The articulatory data are EMA trajectsrie
which are the X and Y coordinates of the lower incisor, up-
per lip, lower lip, tongue tip, tongue body, tongue dorsurd an
velum. The articulatory data are normalized by suggestet-me
ods given in [2] and downsampled to match the 18ms shift rate.
All models are tested using 10-fold cross-validation. Fache
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Figure 2: Magnitude spectrum and Gaussian windows for
155'th frame of Fig-1. Corresponding four formant frequigrsc
are F=[586, 1457, 2628, 3803] Hz.

fold, nine tenths of the data (414 sentences) are used foirtga

and one tenth (46 sentences) for testing. The estimated EMA
trajectories are calculated by using equation (4) and teste
mated trajectories are smoothed by the low pass filter destri

in [2]. Cross-validation performance measures (RMS emadr a
correlation coefficient) are computed as the average okall t
folds.

Table 1:Acoustic feature types.

Four formant frequencies

F=[F1, F2, F3, F4]

Energy levels of four formants

E =[E1, E2,E3,E4]

Mel-frequency cepstral coefficients
(13 orders) M = [M1,...,M13]
Combination of X and its time derivatives;
velocity and acceleration components
XA, AA=[X, XA, X_AA]

(X can be any feature type or any
combination

i.e. MF.A, AA= [MF, MF_A, MF_AA])

X_A, AA

Algorithm performance is measured using the three perfor-
mance measures (RMS error, normalized RMS error and corre-
lation coefficient) described in [2, 10].

RMS error:

where,zt andz: are true and estimated position, respectively,
of theith articulator in thekth frame.
Normalized RMS error:

) Et
ENrums = M:i =1..,m (8)
1
where,o; is the standard deviation af .
Correlation coefficient:
o, = Zil(mk_j}c)(iz_%}c) i=1 .m
T, T T - - — — s b T by ey
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Figure 3:RMS error and correlation coefficient as a function of
the number of mixture components using formant relatedscou
tic features given Table-1.

where,z' andz’ are the average position of true and estim
it" articulator respectively.

In order to determine whether or not articulatory inver
using formant parameters significantly outperforms alditoury
inversion without formant parameters, the following test<
performed. Two hypothesis are used for this purpddg:anc
H;. The null hypothesig], states that the RMS error of the
gression model observing both formant parameters and N
is no different from the RMS error of the regression m
observing only MFCCs; the test hypothedis states that the
RMS errors differ. Thus:

RMS Error (mm)

Ho:e=J—-J"<0

Hio:e=J—-J >0 (10)

where,J is the RMS error without formant related features and
J¥ is the RMS error with formant related features. As de-
scribed in [5], we reject the null hypothesis if
Z = ——>t(a)
VK

(11)

wheree = £ 3°F e, 00 = /= 3K (ei — €)% andto(a)

is the threshold based on the upper tail of the normal density
with significance levety; for o = 0.01, to = 2.33. In order to
validate the assumption of independent trials, each seatisn
treated as a trial, rather than each frame; thus the average
RMS for theith sentence. There af€ = 460 sentences in the
ten-fold cross-validation test. Significance tests foreation
coefficients are performed using a similar procedure.

4.2. Experimental results

The acoustic-to-articulatory inversion experiment usorgy
formant related acoustic features can be seen in Fig. 3.idn th
figure RMS error and correlation coefficient are calculatd f
different mixture Gaussian PDFs with 1 to 64 components. It
can be observed that combination of formant related festure
and their velocity and acceleration component gives best pe
formance for the 64-Gaussian regression. The resultingdbw
RMS error is about 1.56 mm, and the highest correlation coef-
ficient is about 0.72.

The comparison of formant related acoustic features and
MFCC can be examined in Fig. 4. In general, MFCC give
better results than formant related features; this is asrreg
in automatic speech recognition applications. This figuse a
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Figure 4:RMS error and correlation coefficient as a function of
the number of mixture components using formant features and
MFCC.
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Figure 5:RMS error and correlation coefficient using combina-
tion of formants related features and MFCC.

shows that velocity and acceleration components improge th
accuracy of MFCC-based articulatory inversion.

The combination of MFCC and formant related acoustic
features in acoustic-to articulatory inversion is tabedsin Fig.
5. The RMS error is about 1.49 mm for M, AA with 64
Gaussian mixtures. Using only combination of MFCC and for-
mant frequencies reduces RMS error to 1.46 mm. Combination
of MFCC, formants and formant energies reduces RMS error to
about 1.44 mm. Hence, overall RMS error reduction is about
3.35%. Correlation coefficient increases from 0.75 to 0&77,
2.66% relative improvement.

Fig. 6 provides more details regarding the utility of forrhan
related acoustic features in inversion. All results in figsire
use a 64-Gaussian regression. The abscissa distinguiffiees d
ent articulators. As an example, Normalized RMS error for Y
axis of upper lip (uly) reduced from 0.736mm to 0.7mm, a 4.2%
relative error reduction (left side of Fig. 6). Similarlprcela-
tion improvements and corresponding percentages are given
the right side of the same figure.

Fig. 7 measures the significance of the normalized RMS er-
ror reductions and correlation coefficient improvementsash
in Fig. 6. This figure shows that RMS error reduction and cor-
relation improvement for each articulators are significrihe
«a = 0.01 level of significance.

The experimental results also show formant related aaousti
features are especially useful for plosive and fricativensis,
as well as vowel sounds (Table-2 and Fig. 8). As an example,
RMS error reduction and correlation improvement are ab&ut 4
and 3.4% for plosive sounds, respectively.

An example of true and estimated trajectories for the y-
coordinates of the tongue body is shown in Fig. 9 fora MOCHA
utterance.
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Figure 6:Normalized RMS error reduction and correlation co-
efficient improvement for each articulator in detail. Therher
of Gaussian mixture is 64. li, ul,ll, tt, thb, td and v show lo
incisor, upper lip, lower lip, tongue tip, tongue body, toe
dorsum and velum, respectively. *x and *y in each articul

show X and Y coordinates, respectively
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Figure 7: Significance tests for normalized RMS error reduc-
tions and correlation improvements given in Fig. 6. Abbrevi
ations related to the names of the articulators are expldiime
Fig. 6

5. Discussion and conclusion

In this study, the usefulness of formant frequencies anceeor
sponding energies in acoustic-to articulatory inversiom ex-
amined. It is observed that combination of MFCC and formant
related features as acoustic features gives better rélsatius-

ing only MFCC. The average RMS error reduction is about
3.4%, and correlation improves by 2.7%; both improvements
are statistically significant at the = 0.01 level of significance.
Formant features are especially useful for articulatovgiision
during plosives and fricatives; during plosive phonemddgSR
error reduction and correlation improvement are about 46 an
3.4%, respectively.
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Figure 9: Tongue body y-axis true and estimated trajectories
as an example 'They all enjoy ice cream sundaes’ from fsewO-
Mocha-TIMIT database



