Problem 1 (30 points)

Suppose you have an RGB image $i[n_1, n_2, n_3]$ with $0 \leq n_1 < N_1$ rows, $0 \leq n_2 < N_2$ columns, and $0 \leq n_3 < 3$ color planes. The matched filter in part (d) of this problem is of size $M_1 \times M_2$.

Use big-O notation, in terms of the variables N_1, N_2, M_1 and M_2, to express the complexity of each of the following operations:

(a) Converting from RGB to YPbPr color space.

Solution:

Big-O notation is defined as: an operation is $O\{f(N_1, N_2, M_1, M_2)\}$ if and only if there exist some positive constants, $G, N^*_1, N^*_2, N^*_1, N^*_2$ such that the number of operations is $\leq Gf(N_1, N_2, M_1, M_2)$ for all $N_1 \geq N^*_1, N_2 \geq N^*_2, M_1 \geq M^*_1$ and $M_2 \geq M^*_2$.

The conversion from RGB to YPbPr involves a 3×3 matrix multiplication per pixel:

$$
\begin{bmatrix}
Y \\
B \\
P
\end{bmatrix}
[n_1, n_2] =
\begin{bmatrix}
0.299 & 0.587 & 0.114 \\
-0.168736 & -0.331264 & 0.5 \\
0.5 & -0.418688 & -0.081312
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
P
\end{bmatrix}
[n_1, n_2],
$$

which is 9 scalar multiply-add operations per pixel. Since there are $N_1 \times N_2$ pixels, the total number of multiplications required is $9N_1N_2$, which is $O\{N_1N_2\}$.

(b) Computing the horizontal and vertical gradients of each color plane using a Sobel mask.

Solution:

Sobel mask is a convolution, as

$$
G_x[n_1, n_2] =
\begin{bmatrix}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{bmatrix}
\ast\ast I[n_1, n_2],

G_y[n_1, n_2] =
\begin{bmatrix}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{bmatrix}
\ast\ast I[n_1, n_2]
$$

there are 6 nonzero coefficients in each filter (12 total), so we have a total of 12 additions per output pixel. The # output pixels is $(N_1 + 2)(N_2 + 2)$, or N_1N_2, or $(N_1 - 2)(N_2 - 2)$, depending on whether we’re doing full, same, or valid convolution – but in any case, all of these are $O\{N_1N_2\}$. Total computation is therefore $12N_1N_2$, which is $O\{N_1N_2\}$.

(c) Lowpass filtering (after zero-padding, so that the output is of the same size, $N_1 \times N_2 \times 3$, as the input) with a separable ideal anti-aliasing filter whose frequency response is

$$
H(\omega_1, \omega_2) = \begin{cases}
1 & |\omega_1| < \frac{\pi}{3}, \ |\omega_2| < \frac{\pi}{3} \\
0 & \text{otherwise}
\end{cases}
$$
Solution:

The filter is separable, so we can filter each row first, then each column.
Filtering each row requires implementing the following equation once per output pixel:

\[y[n_1,n_2] = h_2[n_2] * x[n_1,n_2] = \sum_{m_2=0}^{N_2-1} x[n_1,m_2]h_2[n_2-m_2] \]

which requires \(N_2 \) multiply-add operations per output pixel. Since there are \(N_1 \times N_2 \) output pixels, the total computation is \(N_1N_2^2 \).

Filtering each column requires implementing the following equation once per output pixel:

\[h_1[n_1] * y[n_1,n_2] = \sum_{m_1=0}^{N_1-1} y[m_1,n_2]h_1[n_1-m_1] \]

which requires \(N_1 \) multiply-add operations per output pixel. Since there are \(N_1 \times N_2 \) output pixels, the total computation is \(N_1^2N_2 \).

So the total computation requires \(N_1N_2(N_1 + N_2) \) multiply-accumulate operations.

The function \(N_1N_2(N_1 + N_2) \) can’t be simplified by stripping off any constants or any low-order terms: for example, \(N_1N_2(N_1 + N_2) \neq O \{N_1^2N_2\} \), because, regardless of how large we choose the constant \(G \), there will be large values of \(N_2 \) for which \(N_1N_2(N_1 + N_2) \leq GN_1^2N_2 \). Since we can’t simplify the polynomial while still keeping it as a strict upper bound on the computation, we need to keep the whole polynomial:

\[N_1N_2(N_1 + N_2) = O \{N_1N_2(N_1 + N_2)\} \]

(d) Filtering with a matched filter of size \(M_1 \) rows, \(M_2 \) columns.

Solution:

Matched filtering is computed as

\[z[n_1,n_2] = \sum_{m_1=0}^{M_1-1} \sum_{m_2=0}^{M_2-1} h[m_1,m_2]x[n_1-m_1,n_2-m_2] \]

The double sum here can’t be simplified, because the filter is not separable. Therefore, each output pixel requires computing a double-sum with \(M_1M_2 \) terms in it.

There are \(N_1N_2 \) output pixels, so in total, we need \(N_1N_2M_1M_2 \) multiply-accumulate operations, which is \(O \{N_1N_2M_1M_2\} \).

(e) Calculating the integral image

\[ii[n_1,n_2] = \sum_{m_1=0}^{n_1} \sum_{m_2=0}^{n_2} i[m_1,m_2,0] \]

for all \(0 \leq n_1 < N_1 \) and \(0 \leq n_2 < N_2 \).

Solution:

Each pixel of the integral image requires just four additions:

\[ii[n_1,n_2] = i[n_1,n_2] + ii[n_1-1,n_2] + ii[n_1,n_2-1] - ii[n_1-1,n_2-1] \]
There are \(N_1 N_2 \) pixels in the integral image, so the total complexity is \(4N_1 N_2 \). If we choose the constants \(G = 4, N_1^* = 0, N_2^* = 0 \), we find that the total computation is less than or equal to \(GN_1 N_2 \) for all \(N_1 \geq N_1^* \) and \(N_2 \geq N_2^* \), therefore the computational complexity is \(O\{N_1 N_2\} \).

(f) Given the integral image, find the box-summation \(f[b_1, b_2, e_1, e_2] \) defined as

\[
f[b_1, b_2, e_1, e_2] = \sum_{n_1=b_1}^{e_1} \sum_{n_2=b_2}^{e_2} i[n_1, n_2, 0]
\]

for all values \(0 \leq b_1 \leq N_1 - 1, 0 \leq e_1 \leq N_1 - 1, 0 \leq b_2 \leq N_2 - 1, 0 \leq e_2 \leq N_2 - 1 \).

Solution:

We can find the feature, for any given \((b_1, b_2, e_1, e_2)\), using just four additions:

\[
f[b_1, b_2, e_1, e_2] = ii[e_1, e_2] - ii[b_1, e_2] - ii[e_1, b_2] + ii[b_1, b_2]
\]

There are a total of \(N_1^2 N_2^2 \) different combinations of \((b_1, b_2, e_1, e_2)\) to consider, so the total computation is \(4N_1^2 N_2^2 \), which is \(O\{N_1^2 N_2^2\} \).

Problem 2 (10 points)

Suppose you have an input image with 8-bit integer pixel values, \(0 \leq i[n_1, n_2, n_3] \leq 255 \), where \(n_1 \) is the row index, \(n_2 \) is the column index, and \(n_3 \) is the color plane. What are the minimum and maximum possible values that result as the outputs of the following operations:

(a) Convert to a YPbPr color space. What are the minimum and maximum possible values of \(Y, P_b, \) and \(P_r \)?

Solution:

\[
\begin{bmatrix}
Y \\
P_b \\
P_r
\end{bmatrix}_{[n_1, n_2]} =
\begin{bmatrix}
0.299 & 0.587 & 0.114 \\
-0.168736 & -0.331264 & 0.5 \\
0.5 & -0.418688 & -0.081312
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}_{[n_1, n_2]},
\]

The top row adds up to one, and all coefficients are positive, so \(0 \leq Y \leq 255 \). The second and third rows each have negative coefficients that total 0.5, and a positive coefficient of 0.5, so \(-255/2 \leq P_b \leq 255/2 \) and \(-255/2 \leq P_r \leq 255/2 \).

(b) Compute the horizontal and vertical gradients using a Sobel mask. What are the minimum and maximum possible values of each of the two gradient images?

Solution:

The usual definition of the Sobel mask is:

\[
G_x[n_1, n_2] = \begin{bmatrix}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{bmatrix} \ast i[n_1, n_2], \quad G_y[n_1, n_2] = \begin{bmatrix}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{bmatrix} \ast i[n_1, n_2]
\]

so \(-4 \times 255 \leq G_x[n_1, n_2] \leq 4 \times 255 \) and \(-4 \times 255 \leq G_y[n_1, n_2] \leq 4 \times 255 \).
Problem 3 (5 points)

Consider the infinite-sized image $i[n_1, n_2] = \delta[n_1 - 5]$, i.e.,

$$i[n_1, n_2] = \begin{cases} 1 & n_1 = 5 \\ 0 & \text{otherwise} \end{cases}$$

Use a Sobel mask to find the resulting images $G_x[n_1, n_2]$ and $G_y[n_1, n_2]$.

Solution:

To figure out this answer, it’s useful to write the separable form of the Sobel mask, which would be

$$G_x[n_1, n_2] = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \ast ([1, 0, -1] \ast \delta[n_1 - 5]) = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \ast 0 = 0$$

Where the second equality comes from subtracting $1 - 1$ for each pixel of the fifth row, and $0 - 0$ for every other pixel in the image. On the other hand,

$$G_y[n_1, n_2] = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \ast ([1, 2, 1] \ast \delta[n_1 - 5]) = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \ast (4\delta[n_1 - 5]) = \begin{cases} 4 & n_1 = 5 \\ -4 & n_1 = 7 \\ 0 & \text{otherwise} \end{cases}$$

Problem 4 (5 points)

Suppose you want to find the horizon line in a grayscale image $i[n_1, n_2]$. Suppose the horizon line is defined to be the row index n_1 that maximizes the brightness difference $BD[n_1]$, defined as

$$BD[n_1] = \sum_{m_2=0}^{N_2-1} \left(\frac{1}{n_1} \sum_{m_1=0}^{n_1-1} i[m_1, m_2] - \frac{1}{N_1-n_1} \sum_{m_1=n_1}^{N_1-1} i[m_1, m_2] \right)$$

You are given the integral image $ii[n_1, n_2] = \sum_{m_1=0}^{n_1} \sum_{m_2=0}^{n_2} i[m_1, m_2, 0]$. Devise a formula that uses $ii[n_1, n_2]$ to compute $BD[n_1]$ with a small constant number of operations per candidate horizon line.

Solution:

Let’s start out by re-arranging the order of summation, so that the m_1 and m_2 sums are in the same order as the definition of the integral image:

$$BD[n_1] = \frac{1}{n_1} \left(\sum_{m_1=0}^{n_1-1} \sum_{m_2=0}^{N_2-1} i[m_1, m_2] \right) - \frac{1}{N_1-n_1} \left(\sum_{m_1=n_1}^{N_1-1} \sum_{m_2=0}^{N_2-1} i[m_1, m_2] \right)$$

The first term is already an integral image. The second term can be split up into two integral-image-like terms:

$$BD[n_1] = \frac{1}{n_1} \left(\sum_{m_1=0}^{n_1-1} \sum_{m_2=0}^{N_2-1} i[m_1, m_2] \right) - \frac{1}{N_1-n_1} \left(\sum_{m_1=0}^{n_1-1} \sum_{m_2=0}^{N_2-1} i[m_1, m_2] - \sum_{m_1=0}^{n_1-1} \sum_{m_2=0}^{N_2-1} i[m_1, m_2] \right)$$
...and now, we just substitute the symbol in place of its definition:

\[BD[n_1] = \frac{1}{n_1} (ii[n_1 - 1, N_2 - 1]) - \frac{1}{N_1 - n_1} (ii[N_1 - 1, N_2 - 1] - ii[n_1 - 1, N_2 - 1]) \]

Problem 5 (5 points)

Consider the problem of upsampling, by a factor of 2, the infinite-sized image

\[x[n_1, n_2] = \delta[n_1 - 5] = \begin{cases} 1 & n_1 = 5 \\ 0 & \text{otherwise} \end{cases} \]

Suppose that the image is upsampled, then filtered, as

\[y[n_1, n_2] = \begin{cases} x[n_1/2, n_2/2] & n_1/2 \text{ and } n_2/2 \text{ both integers} \\ 0 & \text{otherwise} \end{cases} \]

\[z[n_1, n_2] = y[n_1, n_2] \ast h[n_1, n_2] \]

Let \(h[n_1, n_2] \) be the ideal anti-aliasing filter with frequency response

\[H(\omega_1, \omega_2) = \begin{cases} 1 & |\omega_1| < \frac{\pi}{2}, \ |\omega_2| < \frac{\pi}{2} \\ 0 & \text{otherwise} \end{cases} \]

Find \(z[n_1, n_2] \).

Solution:

\[h[n_1, n_2] = h_1[n_1]h_2[n_2] = \left(\frac{1}{2} \right) \text{sinc} \left(\frac{\pi n_1}{2} \right) \left(\frac{1}{2} \right) \text{sinc} \left(\frac{\pi n_2}{2} \right) \]

\[y[n_1, n_2] = \begin{cases} 1 & n_1 = 10 \text{ and } n_2 \text{ a multiple of 2} \\ 0 & \text{otherwise} \end{cases} \]

\[z[n_1, n_2] = \left(\sum_{p=-\infty}^{\infty} \delta[n_2 - 2p] \right) n_1 = 10 \]

Convolving along each row gives \(h_2[n_2] \ast y[n_1, n_2] \), which is zero, except on the \(n_1 = 10 \) row. On that row, \(y[n_1, n_2] \) is equal to one on the even-numbered samples, and equal to zero on the odd-numbered samples. The correct answer is the obvious one: the low-pass filter computes a perfect average between 0 and 1, so each pixel winds up with a value of 1/2. If you want to do a more careful analysis, you could notice that this row is an impulse train with a period of \(P = 2 \), and therefore it has a DTFT which has impulses of area \(2\pi/P = \pi \) at \(\omega = 0 \) and \(\omega = \pi \). The LPF keeps only the \(\omega = 0 \) impulse, thus:

\[h_2[n_2] \ast y[n_1, n_2] = \begin{cases} \left(\sum_{p=-\infty}^{\infty} \delta[n_2 - 2p] \right) * \left(\frac{1}{2} \text{sinc} \left(\frac{\pi n_2}{2} \right) \right) & n_1 = 10 \\ 0 & \text{otherwise} \end{cases} \]

\[= \mathcal{F}^{-1} \left\{ \left(\frac{2\pi}{2} \sum_{k=0}^{1} \delta \left(\omega - \frac{2\pi k}{2} \right) \right) \left(\begin{cases} 1 & |\omega_2| < \frac{\pi}{2} \\ 0 & \text{otherwise} \end{cases} \right) \right\} n_1 = 10 \]

\[= \mathcal{F}^{-1} \left\{ \pi \delta(\omega) \right\} n_1 = 10 \]

\[= \begin{cases} \frac{1}{2} & n_1 = 10 \\ 0 & \text{otherwise} \end{cases} \]
Convolving along each column, then, gives

\[z[n_1, n_2] = h_1[n_1] * h_2[n_2] * y[n_1, n_2] = \left(\frac{1}{4} \right) \text{sinc} \left(\frac{\pi (n_1 - 10)}{2} \right) \]

Problem 6 (5 points)

The stochastic autocorrelation of a periodic signal is periodic, \(R_{xx}[P] = R_{xx}[0] \). How about the signal autocorrelation? Suppose that the frame length is an integer multiple of the number of periods, \(L = kP \), so that

\[x[n] = \begin{cases} \text{periodic with period } P & 0 \leq n \leq kP - 1 \\ 0 & \text{otherwise} \end{cases} \]

Find \(r_{xx}[P] \) in terms of \(r_{xx}[0] \).

Solution:

\[r_{xx}[n] = \sum_{m=-\infty}^{\infty} x[m]x[m - n] = \sum_{m=0}^{L-|n|-1} x[m]x[m - n], \]

where the second equality is true because there are only \(L - 1 \) nonzero samples in a frame. Since \(x[n] = x[n + P] = x[n + 2P] = \ldots \),

\[r_{xx}[0] = \sum_{m=0}^{L-1} x^2[m] = k \sum_{m=0}^{P-1} x^2[m] \]

Likewise,

\[r_{xx}[P] = \sum_{m=0}^{L-P-1} x[m]x[m - P] = \sum_{m=0}^{L-P-1} x^2[m] = (k - 1) \sum_{m=0}^{P-1} x^2[m] \]

So

\[r_{xx}[P] = \left(\frac{k - 1}{k} \right) r_{xx}[0] \]

Problem 7 (10 points)

Consider the signal \(x[n] = \beta^n u[n] \), where \(u[n] \) is the unit step function.

(a) Find the LPC coefficient, \(\alpha \), that minimizes \(\varepsilon \), where

\[\varepsilon = \sum_{n=-\infty}^{\infty} e^2[n], \quad e[n] = x[n] - \alpha x[n - 1] \]

Solution:
\[\varepsilon = \sum_{n=-\infty}^{\infty} (x[n] - \alpha x[n-1])^2 \]
(1)

\[= 1 + \sum_{n=1}^{\infty} (\beta^n - \alpha \beta^{n-1})^2 \]
(2)

Differentiating w.r.t. \(\alpha \) gives

\[\frac{\partial \varepsilon}{\partial \alpha} = -2 \sum_{n=1}^{\infty} \beta (\beta^n - \alpha \beta^{n-1}) \]

which is zero iff \(\alpha = \beta \).

(b) Find the signal \(e[n] \) that results from your choice of \(\alpha \) in part (a).

Solution:

\[e[n] = \beta^n u[n] - \alpha \beta^{n-1} u[n-1] = \beta^n (u[n] - u[n-1]) = \delta[n] \]

Problem 8 (10 points)

Consider the LPC synthesis filter \(s[n] = e[n] + \alpha s[n-1] \).

(a) Under what condition on \(\alpha \) is the synthesis filter stable?

Solution:

The roots of the polynomial \(1 - \alpha z^{-1} \) must be inside the unit circle. That’s a first-order polynomial, its only root is \(z^{-1} = \alpha \), so we just need \(|\alpha| < 1 \).

(b) Assume that the synthesis filter is stable. Suppose that \(e[n] \) is the pulse train \(e[n] = \sum_{p=\infty}^{\infty} \delta[n - pP] \). As a function of \(\alpha \), \(P \), and \(\omega \), what is the DTFT \(S(e^{j\omega}) \)? You need not simplify, but your answer should contain no integrals or infinite sums.

Solution:

The DTFT of the pulse train is a pulse train,

\[E(e^{j\omega}) = \left(\frac{2\pi}{P} \right)^{P-1} \sum_{k=0}^{P-1} \delta \left(\omega - \frac{2\pi k}{P} \right) \]

The DTFT of the synthesized signal is

\[S(e^{j\omega}) = H(e^{j\omega})E(e^{j\omega}) = \frac{E(e^{j\omega})}{1 - \alpha e^{-j\omega}} \]

So

\[S(e^{j\omega}) = \frac{1}{1 - \alpha e^{-j\omega}} \left(\frac{2\pi}{P} \right)^{P-1} \sum_{k=0}^{P-1} \delta \left(\omega - \frac{2\pi k}{P} \right) \]