Lecture 11: Frequency Response

ECE 401: Signal and Image Analysis

University of Illinois

3/2/2017
1. LTI Review

2. Frequency Response

3. Frequency Response of an Averager
Outline

1. LTI Review
2. Frequency Response
3. Frequency Response of an Averager
Is this system linear? Is it time-invariant? Can you prove your answers?

\[y[n] = x[n] + x[n + 5] \]
Outline

1. LTI Review
2. Frequency Response
3. Frequency Response of an Averager
Frequency Response Example

Consider the system

\[y[n] = x[n - 1] + x[n] + x[n + 1] \]

Suppose the input is a cosine at some frequency \(\omega \),
\(x[n] = \cos(\omega n) \). Then the output is

\[y[n] = \cos(\omega (n - 1)) + \cos(\omega n) + \cos(\omega (n + 1)) \]

Using the phasor method, we can write this as

\[y[n] = \Re \{ e^{j \omega n} e^{-j \omega} + e^{j \omega n} + e^{j \omega n} e^{j \omega} \} \]
\[= \Re \{ (e^{-j \omega} + 1 + e^{j \omega}) e^{j \omega n} \} \]
\[= \Re \{ (1 + 2 \cos(\omega)) e^{j \omega n} \} = (1 + 2 \cos(\omega)) \cos(\omega n) \]

So the output is a cosine at **exactly the same frequency**, but scaled by the frequency-dependent scaling factor

\[H(\omega) = 1 + 2 \cos(\omega) \]
Consider the LTI system

\[y[n] = x[n] \ast h[n] = \sum_{m=-\infty}^{\infty} h[m]x[n - m] \]

Suppose the input is \(x[n] = e^{j\omega n} \). Then the output is

\[
y[n] = \sum_{m=-\infty}^{\infty} h[m]e^{j\omega(n-m)} = e^{j\omega n} \sum_{m=-\infty}^{\infty} h[m]e^{-j\omega m}
\]

\[= e^{j\omega n}H(\omega) \]

So the output is a complex exponential at exactly the same frequency, but scaled by the complex-valued, frequency-dependent constant

\[H(\omega) = \sum_{m=-\infty}^{\infty} h[m]e^{-j\omega m} \]
Frequency Response Definition

$$H(\omega) = \sum_{m=-\infty}^{\infty} h[m] e^{-j\omega m}$$

$x[n] = \text{Complex Exponential}$

$$x[n] = e^{j\omega n} \rightarrow y[n] = H(\omega)x[n]$$
Frequency Response: Sinusoidal Inputs

\(x[n] = \text{Cosine} \)

\[x[n] = \cos(\omega n) \rightarrow y[n] = |H(\omega)| \cos(\omega n + \angle H(\omega)) \]

\(x[n] = \text{Sine} \)

\[x[n] = \sin(\omega n) \rightarrow y[n] = |H(\omega)| \sin(\omega n + \angle H(\omega)) \]

where \(|H(\omega)| \) and \(\angle H(\omega) \) are just the magnitude and phase of \(H(\omega) \), i.e.,

\[H(\omega) = |H(\omega)| e^{j\angle H(\omega)} \]
Example: Averager = The Simplest Lowpass Filter

\[h[n] = \delta[n] + \delta[n - 1] \]

\[
H(\omega) = \sum_{m=-\infty}^{\infty} h[m]e^{-j\omega m} = 1 + e^{-j\omega} \\
= e^{-j\omega/2}(e^{j\omega/2} + e^{-j\omega/2}) = 2e^{-j\omega/2}\cos(\omega/2)
\]

So

\[
|H(\omega)| = 2\cos(\omega/2), \quad \angle H(\omega) = -\omega/2
\]

Notice that \(H(0) = 1 \), while \(H(\pi) = 0 \), so this is a *lowpass filter*. Thus if \(x[n] = \cos(\omega n) \) then

\[
y[n] = \left(2\cos\left(\frac{\omega}{2}\right)\right)\cos\left(\omega \left(n - \frac{1}{2}\right)\right) = \begin{cases} 2\cos(\omega(n - 1/2)) & \omega = 0 \\ 0 & \omega = \pi \end{cases}
\]
Example: Euler Differencer = The Simplest Highpass Filter

\[h[n] = \delta[n] - \delta[n-1] \]

\[H(\omega) = \sum_{m=-\infty}^{\infty} h[m]e^{-j\omega m} = 1 - e^{-j\omega} \]

\[= e^{-j\omega/2}(e^{j\omega/2} - e^{-j\omega/2}) = 2je^{-j\omega/2}\sin(\omega/2) \]

So

\[|H(\omega)| = 2\sin(\omega/2), \quad \angle H(\omega) = \frac{\pi - \omega}{2} \]

Notice that \(H(0) = 0 \), while \(H(\pi) = 1 \), so this is a highpass filter. Thus if \(x[n] = \cos(\omega n) \) then

\[y[n] = \left(2\sin\left(\frac{\omega}{2}\right)\right)\cos\left(\omega \left(n - \frac{1}{2}\right) + \frac{\pi}{2}\right) = \begin{cases} 0 & \omega = 0 \\ 2\sin(\omega(n - 1/2)) & \omega = \pi \end{cases} \]
Outline

1. LTI Review

2. Frequency Response

3. Frequency Response of an Averager
Frequency Response of an Averager, in General

\[h[n] = u[n] - u[n - N] \quad \text{for some integer } N \]

\[H(\omega) = \sum_{m=-\infty}^{\infty} h[m] e^{-j\omega m} = \sum_{m=0}^{N-1} e^{-j\omega m} \]

In order to solve this one, we need to use Zeno’s paradox, which can be stated as follows. For any fraction \(a \) such that \(|a| < 1 \),

\[\sum_{m=0}^{\infty} a^m = \frac{1}{1 - a} \]

(In the fable created by the ancient Greek philosopher Zeno of Elea, the fraction is \(a = \frac{1}{2} \)).
\[H(\omega) = \sum_{m=0}^{\infty} e^{-j\omega m} - \sum_{m=N}^{\infty} e^{-j\omega m} \]

\[= \sum_{m=0}^{\infty} e^{-j\omega m} - e^{-j\omega N} \sum_{m=0}^{\infty} e^{-j\omega m} \]

using Zeno’s paradox, we convert this to

\[= \frac{1}{1 - e^{-j\omega}} - \frac{e^{-j\omega N}}{1 - e^{-j\omega}} \]

\[= \frac{1 - e^{-j\omega N}}{1 - e^{-j\omega}} = \left(\frac{e^{-j\omega N/2}}{e^{-j\omega/2}} \right) \left(\frac{e^{j\omega N/2} - e^{-j\omega N/2}}{e^{j\omega/2} - e^{-j\omega/2}} \right) \]

\[= e^{-j\omega \frac{(N-1)}{2}} \frac{\sin(\omega N/2)}{\sin(\omega/2)} \]
So the frequency response of this averager:

\[h[n] = u[n] - u[n - N] \quad \text{for some integer } N \]

is

\[H(\omega) = A(\omega)e^{-j\theta(\omega)} \]

where

\[A(\omega) = \left(\frac{\sin(\omega N/2)}{\sin(\omega/2)} \right) \quad \theta(\omega) = -\omega(N - 1)/2 \]
The **signed-amplitude response** of an averager has the following important characteristics

\[A(\omega) = \left(\frac{\sin(\omega N/2)}{\sin(\omega/2)} \right) \]

We call that the **signed-amplitude response** because it can be either positive or negative; we only require that it should be real. So it’s not exactly the same thing as the magnitude of the complex number.

\[A(\omega) = \begin{cases}
N & \omega = 0 \\
0 & \omega = 2\pi \ell/N, \text{ any integer } \ell \neq 0
\end{cases} \]

In particular, \(H(\pi) = 0 \), so this is a lowpass filter. We could say that the \(N \)-point averager is much more lowpass than the 2-point averager; its **cutoff frequency** is \(\omega = 2\pi/N \).
The **phase response** of an averager has the following important characteristic:

\[\theta(\omega) = -\omega(N - 1)/2 \]

Notice that this phase is a **linear** function of \(\omega \) (we say the filter has **generalized linear phase**). In general, a linear phase filter is one whose phase response looks like

\[\theta(\omega) = -\omega d \]

for any constant \(d \). The constant \(d \) is called the **filter delay**, because

\[x[n] = \cos(\omega n) \rightarrow y[n] = A(\omega) \cos(\omega (n - d)) \]

So the filter acts as though it **delays** the input, by a delay of \(d \) samples.