Tutorial: Pattern Recognition in Acoustic Signal Processing

Mark Hasegawa-Johnson

These slides:

ASA Spring Meeting, May 21, 2009
Outline

1. Why Use Pattern Recognition?
2. Algorithm Selection
3. Tutorial: Discriminative Methods
 - Hypothesis Space: Universal Approximators
 - Training Criteria: Differentiable Error Metric
 - Training Algorithm: Chain Rule
 - Wrinkle #1: Recognition, Tracking
 - Wrinkle #2: Small Training Corpus
4. Tutorial: Bayesian Methods
 - Hypothesis Space: Latent Variables
 - Training Criteria: Maximum Likelihood, MAP, MaxEnt
 - Training and Inference Algorithms: Bayes’ Rule
 - Wrinkle #1: HMM Regression, Switching Kalman Smoothers
5. Tutorial: Hybrids
6. Conclusions
The Scientific Method

\[y = h(x) \]

Hypothesize-Measure-Test

1. Based on knowledge of the physical situation, form:
 1. a hypothesis
 2. a null hypothesis
2. Collect data: \((x_i, y_i), 1 \leq i \leq N\).
3. Test the hypothesis: measure \(P(\text{data}|\text{null hypothesis})\)

Pattern Recognition in Acoustic Signal Processing

Why Use Pattern Recognition?
The Pattern Recognition Method

\[y = h(x) \]

Hypothesize-Measure-Learn-Test

1. Form an infinite set of hypotheses (called the “hypothesis space”), usually a parameterized universal approximator.
2. Collect:
 1. training data \(((x_i, y_i), 1 \leq i \leq N)\)
 2. testing data \(((x_i, y_i), N + 1 \leq i \leq N + M)\)
3. Train the hypothesis: maximize \(P(\text{hypothesis}|\text{training data})\)
4. Test the hypothesis: measure \(P(\text{testing data}|\text{hypothesis})\)
Example: PR in the Scientific Method

Pattern Recognition: discriminatively trained universal approximator

Auditory Rate Features

Salience (Bottom-Up Probability of Attentive Fixation)

Acoustic Event Detection

Reference

Error

Hypothesis 1: Signal Model, Salience of an Acoustic Event

Hypothesis 2: Salience contributes to acoustic event
Criteria for Choosing a Pattern Recognizer

1. Structure of the Model
 1. **Discriminative Training:** All parameters in the model can be simultaneously adjusted to minimize global error metric
 2. **Bayesian Training:** Components must be separately trained, then combined without blowing up
Criteria for Choosing a Pattern Recognizer

1. **Structure of the Model**
 1. Discriminative
 2. Bayesian

2. **Size of the Training Database**
 1. **Empirical Risk Minimization:** Training database includes 10,000 independent trials; train model to minimize training database error
 2. **Structural Risk Minimization:** Training database smaller than 1000 trials; train model to minimize

\[P(\text{Error}) \leq (\text{Training Corpus Error}) + \lambda \frac{(\text{Model Complexity})}{(\text{Training Corpus Size})} \]
Criteria for Choosing a Pattern Recognizer

1. **Structure of the Model**
 - 1. Discriminative
 - 2. Bayesian

2. **Size of the Training Database**
 - 1. Empirical Risk Minimization
 - 2. Structural Risk Minimization

3. **Dynamic State**
 - 1. $y = h(x)$ has no hidden state (**classification**, **regression**)
 - 2. $y = h(x)$ has hidden state (**recognition**, **tracking**)

Pattern Recognition in Acoustic Signal Processing
Algorithm Selection
Criteria for Choosing a Pattern Recognizer

1. **Structure of the Model**
 - 1. Discriminative
 - 2. Bayesian

2. **Size of the Training Database**
 - 1. Empirical Risk Minimization
 - 2. Structural Risk Minimization

3. **Dynamic State**
 - 1. \(y = h(x) \) has no hidden state (**classification**, **regression**)
 - 2. \(y = h(x) \) has hidden state (**recognition**, **tracking**)

4. **Function Range**
 - 1. \(y = h(x) \) is an integer (**classification**, **recognition**)
 - 2. \(y = h(x) \) is a real-valued vector (**regression**, **tracking**)

Discriminative Training—Gradient Descent Methods

1. Choose a hypothesis space (a universal approximator)
2. Choose a differentiable error metric
3. Apply the Chain Rule
Universal Approximators

Universal Approximator: Definition

A parameterized function space \(h_\Theta(x) \), with parameter vector \(\Theta \in \mathbb{R}^{\alpha K} \), is called a universal approximator if for any bounded \(h(x) \) with finite domain,

\[
\lim_{K \to \infty} \min_{\Theta} \| h_\Theta(x) - h(x) \| = 0
\]

Example: Sigmoidal Neural Network

1. Sigmoidal Neural Network \((\Theta = \{ c_1, \ldots, c_K, w_1, \ldots, w_K \}) \)

\[
h_\Theta(x) = \sum_{k=1}^{K} c_k \frac{1}{1 + e^{-x^T w_k}}
\]
Universal Approximators

More Examples: Universal Approximators

1. **Sigmoidal Neural Network** \((\Theta = \{c_1, \ldots, c_K, w_1, \ldots, w_K\}) \)

 \[
h_{\Theta}(x) = \sum_{k=1}^{K} c_k e^{-\frac{1}{2}(x-\mu_k)^T \Sigma_k^{-1}(x-\mu_k)}
 \]

2. **Mixture Gaussian** \((\Theta = \{c_1, \ldots, c_K, \mu_1, \ldots, \mu_K, \Sigma_1, \ldots, \Sigma_K\}) \)

3. **Classification and Regression Tree (CART), K Nearest Neighbors (KNN), etc.** \((\Theta = [b_1, \ldots, b_K, w_1, \ldots, w_K, R_1, \ldots, R_k]) \)

 \[
h_{\Theta}(x) = x^T w_k + b_k \quad \text{if} \ x \in R_k
 \]

 \(R_k\) is a region with piece-wise linear boundaries.
Differentiable Error Metric

Minkowski Norm Error Metrics

$$\mathcal{E}_L = \frac{1}{N} \sum_{i=1}^{N} \| h_\Theta(x_i) - y_i \|^L_L$$

The “Best” Metric: The Zero Norm

$$\| h_\Theta(x_i) - y_i \|_0 \triangleq \begin{cases}
0 & y_i = h_\Theta(x_i) \\
1 & \text{otherwise}
\end{cases}$$

Problem: if $\mathcal{E}_0 \neq 0$, what do we do next?
Differentiable Error Metric

Minkowski Norm Error Metrics

\[E_L = \frac{1}{N} \sum_{i=1}^{N} \| h_\Theta(x_i) - y_i \|_L \]

Differentiable Error Metrics: \(L = 1, L = 2 \)

1. The One Norm (Manhattan Distance, \(L = 1 \)):

\[\frac{\partial E_1}{\partial h_\Theta(x_i)} = \text{sign} \left(h_\Theta(x_i) - y_i \right) \]

2. The Two Norm (Euclidean Distance, \(L = 2 \)):

\[\frac{\partial E_2}{\partial h_\Theta(x_i)} = h_\Theta(x_i) - y_i \]
Apply the Chain Rule

The Error Back-Propagation Algorithm

1. **Initialize:** Choose some initial parameter set $\Theta^{(0)}$
2. **Iterate:** For $t = 1, \ldots$ until $E(\Theta)$ stops changing:

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} E$$

$$\nabla_{\Theta} E \triangleq \sum_{i=1}^{N} \left(\frac{\partial E}{\partial h_{\Theta}(x_i)} \right) \left(\nabla_{\Theta} h_{\Theta}(x_i) \right)$$
Wrinkle #1: Recognition, Tracking

A **Recursive Neural Net** is a neural net with one or more hidden state variables:

\[
h_\Theta(x_i) = \sum_{k=1}^{K} c_k \frac{1}{1 + e^{-[x_i^T, h_\Theta(x_{i-1})]w_k}}
\]

Training is performed using **Back-Propagation Through Time**:

\[
\frac{\partial E_2}{\partial h_\Theta(x_i)} = (h_\Theta(x_i) - y_i) + (h_\Theta(x_{i+1}) - y_{i+1}) \left(\frac{\partial h_\Theta(x_{i+1})}{\partial h_\Theta(x_i)} \right) + \ldots
\]
Recursive Neural Nets: Example Application

Task Description

- **Blue** = x_i (F0 = RNN input)
- **Yellow** = y_i (pitch accent = target RNN output)
- **Pink** = $f(x_i)$ (RNN-estimated pitch accent probability)

Example Results
Wrinkle #2: Small Training Corpus

Test Corpus Error Bounds based on the Central Limit Theorem

\[P(\text{Error}) \leq \mathcal{E}(X, Y, \Theta) + \mathcal{G}(\Theta) \]

Example Bounds

Minimum Description Length: \(K(\Theta) \) describes \(h_\Theta(x) \) as a binary program, and

\[\mathcal{G}(\Theta) \propto \|K(\Theta)\|_0 \]

Support Vector Machines: \(\psi(\Theta) \) describes \(h_\Theta(x) \) as a linear classifier in an augmented feature space, and

\[\mathcal{G}(\Theta) \propto \|\psi(\Theta)\|_2^2 \]
Support Vector Machines: Example Application

- Consonant-vowel transitions, and similar manner-change landmarks, are good places to look for information about speech [Stevens, Interspeech 2000]
- Some landmarks occur relatively infrequently—it’s hard to learn what they sound like.
- SVMs do the job [Niyogi, Burges, and Ramesh, 1999; Borys and Hasegawa-Johnson, 2005; chance=50%]:

<table>
<thead>
<tr>
<th>SVM</th>
<th>%ACC</th>
<th>SVM</th>
<th>%ACC</th>
</tr>
</thead>
<tbody>
<tr>
<td>-+-Silence</td>
<td>92.1</td>
<td>++-Silence</td>
<td>91.6</td>
</tr>
<tr>
<td>-++Continuant</td>
<td>79.7</td>
<td>++-Continuant</td>
<td>81.1</td>
</tr>
<tr>
<td>-++Sonorant</td>
<td>86.4</td>
<td>++-Sonorant</td>
<td>91.1</td>
</tr>
<tr>
<td>-++Syllabic</td>
<td>88.6</td>
<td>++-Syllabic</td>
<td>78.5</td>
</tr>
<tr>
<td>-++Consonantal</td>
<td>78.1</td>
<td>++-Consonantal</td>
<td>73.1</td>
</tr>
</tbody>
</table>
Bayesian Methods

- **Bayesian Classification and Recognition:**
 \[y^* = \text{arg max}_y p_\Theta(y|x) \]

- **Bayesian Regression and Tracking:**
 \[y^* = E\{y|x\} \]

Advantages and Disadvantages

- **Disadvantage:** One must learn \(p(x, y) \); this usually requires more data, and is subject to more error, than learning \(y = h(x) \) directly.

- **Advantage:** Bayesian inference allows modeling of latent variables, state dynamics, and extra sources of information in a principled manner.
Hypothesis Space Example: Hidden Markov Model

Let \(X = [x_1, \ldots, x_N] \) be the observations, let \(Y = [y_1, \ldots, y_N] \) be the labels. A **Hidden Markov Model** posits the existence of some latent variables \(Q = [q_1, \ldots, q_N] \) such that

\[
h_\Theta(X) = \arg \max_Y p_\Theta(X, Y)
\]

\[
p_\Theta(X, Y) = \sum_Q \prod_{i=1}^N p_\Theta(y_i|y_{i-1}) p_\Theta(q_i|q_{i-1}, y_i) p_\Theta(x_i|q_i)
\]

- \(p_\Theta(y_i|y_{i-1}) \) (the “language model”) is a lookup table
- \(p_\Theta(q_i|q_{i-1}, y_i) \) (the “pronunciation model”) is a lookup table
- \(p_\Theta(x_i|q_i, y_i) \) (the “acoustic model”) is a Gaussian, with mean vector \(\mu_q \) and covariance matrix \(\Sigma_q \)
Learn the Distributions: Maximum Likelihood

Maximum Likelihood Parameter Estimation

\[\Theta = \text{arg max} \log p_\Theta(X, Y) \]

What About Small Training Corpora?

- Maximum Likelihood is a form of **empirical risk minimization**
- Related forms of **structural risk minimization** include
 - MAP (**maximum a posteriori probability**)
 \[\Theta = \text{arg max} (\log p(X, Y|\Theta) + \log p(\Theta)) \]
 - MaxEnt (**maximum entropy**)
 \[\Theta = \text{arg max} (\log p_\Theta(X, Y) + H(p_\Theta)) \]
Apply Bayes’ Rule

Bayes’ Rule (a.k.a. the Definition of Conditional Probability)

\[p_{\Theta}(X, Y) = \sum_Q \prod_{i=1}^{N} p_{\Theta}(y_i | y_{i-1}) p_{\Theta}(q_i | q_{i-1}, y_i) p_{\Theta}(x_i | q_i) \]

Training a Bayesian Classifier: Maximum Likelihood

\[\Theta = \arg\max p_{\Theta}(X, Y) \]

Testing a Bayesian Classifier: Minimum Probability of Error

\[Y = \arg\max p_{\Theta}(X, Y) \]
Bayesian Regression and Tracking

Hidden Markov Regression

Suppose $y_i \in \mathbb{R}^D$ is a real-valued vector, and (x_i, y_i) are jointly Gaussian:

$$p(x, y|q) \propto \exp \left(-\frac{1}{2} \begin{bmatrix} x_i - \bar{x}_q \\ y_i - \bar{y}_q \end{bmatrix}^T \begin{bmatrix} A_q & B_q \\ B_q^T & C_q \end{bmatrix}^{-1} \begin{bmatrix} x_i - \bar{x}_q \\ y_i - \bar{y}_q \end{bmatrix} \right)$$

then $h(x_i) = \arg \min \mathcal{E}_2$ is

$$E \{ y_i | X \} = \sum_{q_i} P(q_i|X) \left(\bar{y}_q + B_q^T A_q^{-1} (x - \bar{x}_q) \right)$$
Switching Kalman Smoother

- Setup: exactly like HMM regression, except that \((x_i, y_i, y_{i-1})\) are jointly Gaussian
- Result: exactly like HMM regression, except that \(\bar{y}_{i|q,x}, A_{i|q,x}, \text{and } B_{i|q,x}\) must be updated using interacting multiple Kalman filters:

\[
E \{ y_i | X \} = \sum_{q_i} P(q_i | X) \left(\bar{y}_{i|q,x} + B_{i|q,x}^T \bar{x}_{i|q,x} A_{i|q,x}^{-1} (x - \bar{x}_q) \right)
\]
Switching Kalman Smoother: Example

Task Description

- \(x_i \) is an acoustic spectrum; \(y_i \) is the corresponding vector of speech articulator positions
- Results (unpublished):
 \[\mathcal{E}_2(\text{Switching Kalman Smoother}) < \mathcal{E}_2(\text{HMM Regression}) \]
- Difference is consistent but very small
Hybrid Discriminative-Bayesian Systems

Task Scenario

- y_i is very difficult to classify without dynamic information, (e.g. speech recognition: $y_i =$words, $x_i =$short-time spectrum)
- An auxiliary variable f_i can be inferred very accurately using a local classifier (e.g., $f_i =$phonological distinctive features):
 \[\hat{f}_i = h_\Theta(x_i) \]
- Training database includes $X = [x_1, \ldots, x_N]$, $Y = [y_1, \ldots, y_N]$, and $F = [f_1, \ldots, f_N]$
- Testing database includes only $\tilde{X} = [x_{N+1}, \ldots, x_{N+M}]$
Hybrid Training Methods

Training Algorithm

- Train $h_\Theta(x)$ using discriminative methods
 - Minimize
 \[
 \mathcal{E}_L = \frac{1}{N} \sum_{i=1}^{N} \| f_i - h_\Theta(x_i) \|_L
 \]
 - $h_\Theta(x_i)$ is a *real-valued vector* that approximates f_i

- Train a probability model $p_\Theta(F, X, Y)$ using Bayesian methods
 - Using $p_\Theta(F, X, Y)$, Bayesian inference can model dynamics of hidden states, incorporate multiple knowledge sources, etc.
Example: Landmark-Based Speech Recognizer

SVM computes a *real-valued distinctive feature* that optimally discriminates between the case $f_i = 1$ (landmark of a specified type is present) and $f_i = -1$ (landmark absent).

HMM computes $p(\text{phoneme sequence} | \text{landmark sequence})$.

SVM-HMM Hybrid Landmark-Based Speech Recognizer

- SVM computes a *real-valued distinctive feature* that optimally discriminates between the case $f_i = 1$ (landmark of a specified type is present) and $f_i = -1$ (landmark absent).
- HMM computes $p(\text{phoneme sequence} | \text{landmark sequence})$.
Phone Recognition Accuracy vs. Mixture Size, Telephone Speech

- **MFCC** = mel frequency cepstral coefficients
- **Landmark** = detect manner-to-manner landmarks, e.g., obstruent-to-sonorant
- **Manner** = detect manner-onset landmarks, e.g., onset of sonorant region
Example: RNN with Kalman Smoothing

Mitra et al., in review
Conclusions

- Pattern recognition (especially discriminative training)—it’s easy!
 - Choose a hypothesis space (a family of universal approximators)
 - Gradient descent to minimize error
- Bayesian learning simplifies the use of structured models
 - Hidden-state dynamics
 - External sources of information
- Hybrid discriminative-Bayesian methods sometimes give the best of both worlds
 - Discriminative training = minimum error locally
 - Bayesian inference = principled integration of disparate information sources
Thank You!